mxsps 532磁力链接:我要奥赛题!!

来源:百度文库 编辑:杭州交通信息网 时间:2024/04/29 22:43:08
我要奥赛题!!我要奥我要奥赛题!!赛题!!

...书店有卖.那种的书..

抽屉原理
把5个苹果放到4个抽屉中,必然有一个抽屉中至少有2个苹果,这是抽屉原理的通俗解释。一般地,我们将它表述为:
第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
使用抽屉原理解题,关键是构造抽屉。一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。
例1 从1,2,3,…,100这100个数中任意挑出51个数来,证明在这51个数中,一定:
(1)有2个数互质;
(2)有2个数的差为50;
(3)有8个数,它们的最大公约数大于1。
证明:(1)将100个数分成50组:
{1,2},{3,4},…,{99,100}。
在选出的51个数中,必有2个数属于同一组,这一组中的2个数是两个相邻的整数,它们一定是互质的。
(2)将100个数分成50组:
{1,51},{2,52},…,{50,100}。
在选出的51个数中,必有2个数属于同一组,这一组的2个数的差为50。
(3)将100个数分成5组(一个数可以在不同的组内):
第一组:2的倍数,即{2,4,…,100};
第二组:3的倍数,即{3,6,…,99};
第三组:5的倍数,即{5,10,…,100};
第四组:7的倍数,即{7,14,…,98};
第五组:1和大于7的质数即{1,11,13,…,97}。
第五组中有22个数,故选出的51个数至少有29个数在第一组到第四组中,根据抽屉原理,总有8个数在第一组到第四组的某一组中,这8个数的最大公约数大于1。
例2 求证:可以找到一个各位数字都是4的自然数,它是1996的倍数。
证明:因1996÷4=499,故只需证明可以找到一个各位数字都是1的自然数,它是499的倍数就可以了。

得到500个余数r1,r2,…,r500。由于余数只能取0,1,2,…,499这499个值,所以根据抽屉原理,必有2个余数是相同的,这2个数的差就是499的倍数,这个差的前若干位是1,后若干位是0:11…100…0,又499和10是互质的,故它的前若干位由1组成的自然数是499的倍数,将它乘以4,就得到一个各位数字都是4的自然数,它是1996的倍数。
例3 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。
分析:注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。
解:将礼堂中的99人记为a1,a2,…,a99,将99人分为3组:
(a1,a2,…,a33),(a34,a35,…,a66),(a67,a68,…,a99),将3组学生作为3个抽屉,分别记为A,B,C,并约定A中的学生所认识的66人只在B,C中,同时,B,C中的学生所认识的66人也只在A,C和A,B中。如果出现这种局面,那么题目中所说情况就可能出现。
因为礼堂中任意4人可看做4个苹果,放入A,B,C三个抽屉中,必有2人在同一抽屉,即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。

例4 如右图,分别标有数字1,2,…,8的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标数字都不相同。当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。
分析:此题中没有直接提供我们用以构造抽屉和苹果的数量关系,需要转换一下看问题的角度。
解:内外两环对转可看成一环静止,只有一个环转动。一个环转动一周后,每个滚珠都会有一次与标有相同数字的滚珠相对的局面出现,那么这种局面共要出现8次。将这8次局面看做苹果,再需构造出少于8个抽屉。
注意到一环每转动45°角就有一次滚珠相对的局面出现,转动一周共有8次滚珠相对的局面,而最初的8对滚珠所标数字都不相同,所以数字相同的滚珠相对的情况只出现在以后的7次转动中,将7次转动看做7个抽屉,8次相同数字滚珠相对的局面看做8个苹果,则至少有2次数字相对的局面出现在同一次转动中,即必有某一时刻,内外两环中至少有两对数字相同的滚珠相对。
例5 有一个生产天平上用的铁盘的车间,由于工艺上的原因,只能控制盘的重量在指定的20克到20.1克之间。现在需要重量相差不超过0.005克的两只铁盘来装配一架天平,问:最少要生产多少个盘子,才能保证一定能从中挑出符合要求的两只盘子?
解:把20~20.1克之间的盘子依重量分成20组:
第1组:从20.000克到20.005克;
第2组:从20.005克到20.010克;
……
第20组:从20.095克到20.100克。
这样,只要有21个盘子,就一定可以从中找到两个盘子属于同一组,这2个盘子就符合要求。
例6 在圆周上放着100个筹码,其中有41个红的和59个蓝的。那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?
分析:此题需要研究“红筹码”的放置情况,因而涉及到“苹果”的具体放置方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。
解:依顺时针方向将筹码依次编上号码:1,2,…,100。然后依照以下规律将100个筹码分为20组:
(1,21,41,61,81);
(2,22,42,62,82);
……
(20,40,60,80,100)。
将41个红筹码看做苹果,放入以上20个抽屉中,因为41=2×20+1,所以至少有一个抽屉中有2+1=3(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一个内容——第二抽屉原理中说明),即有2个红色筹码之间有19个筹码。
下面我们来考虑另外一种情况:若把5个苹果放到6个抽屉中,则必然有一个抽屉空着。这种情况一般可以表述为:
第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
例7 在例6中留有一个疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。
分析:将这个问题加以转化:

如右图,将同色的3个筹码A,B,C置于圆周上,看是否能用另外2个筹码将其隔开。
解:如图,将同色的3个筹码放置在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。
例8 甲、乙二人为一个正方形的12条棱涂红和绿2种颜色。首先,甲任选3条棱并把它们涂上红色;然后,乙任选另外3条棱并涂上绿色;接着甲将剩下的6条棱都涂上红色。问:甲是否一定能将某一面的4条棱全部涂上红色?
解:不能。
如右图将12条棱分成四组:

第一组:{A1B1,B2B3,A3A4},
第二组:{A2B2,B3B4,A4A1},
第三组:{A3B3,B4B1,A1A2},
第四组:{A4B4,B1B2,A2A3}。
无论甲第一次将哪3条棱涂红,由抽屉原理知四组中必有一组的3条棱全未涂红,而乙只要将这组中的3条棱涂绿,甲就无法将某一面的4条棱全部涂红了。
下面我们讨论抽屉原理的一个变形——平均值原理。
我们知道n个数a1,a2,…,an的和与n的商是a1,a2,…,an这n个数的平均值。
平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个不小于a。
例9 圆周上有2000个点,在其上任意地标上0,1,2,…,1999(每一点只标一个数,不同的点标上不同的数)。求证:必然存在一点,与它紧相邻的两个点和这点上所标的三个数之和不小于2999。
解:设圆周上各点的值依次是a1,a2,…,a2000,则其和
a1+a2+…+a2000=0+1+2+…+1999=1999000。
下面考虑一切相邻三数组之和:
(a1+a2+a3)+(a2+a3+a4)+…+(a1998+a1999+a2000)+(a1999+a2000+a1)+(a2000+a1+a2)
=3(a1+a2+…+a2000)
=3×1999000。
这2000组和中必至少有一组和大于或等于
但因每一个和都是整数,故有一组相邻三数之和不小于2999,亦即存在一个点,与它紧相邻的两点和这点上所标的三数之和不小于2999。
例10 一家旅馆有90个房间,住有100名旅客,如果每次都恰有90名旅客同时回来,那么至少要准备多少把钥匙分给这100名旅客,才能使得每次客人回来时,每个客人都能用自己分到的钥匙打开一个房门住进去,并且避免发生两人同时住进一个房间?
解:如果钥匙数小于990,那么90个房间中至少有一个房间的钥匙数少 房间就打不开,因此90个人就无法按题述的条件住下来。
另一方面,990把钥匙已经足够了,这只要将90把不同的钥匙分给90个人,而其余的10名旅客,每人各90把钥匙(每个房间一把),那么任何90名旅客返回时,都能按要求住进房间。
最后,我们要指出,解决某些较复杂的问题时,往往要多次反复地运用抽屉原理,请看下面两道例题。
例11 设有4×28的方格棋盘,将每一格涂上红、蓝、黄三种颜色中的任意一种。试证明:无论怎样涂法,至少存在一个四角同色的长方形。
证明:我们先考察第一行中28个小方格涂色情况,用三种颜色涂28个小方格,由抽屉原理知,至少有10个小方格是同色的,不妨设其为红色,还可设这10个小方格就在第一行的前10列。
下面考察第二、三、四行中前面10个小方格可能出现的涂色情况。这有两种可能:
(1)这三行中,至少有一行,其前面10个小方格中,至少有2个小方格是涂有红色的,那么这2个小方格和第一行中与其对应的2个小方格,便是一个长方形的四个角,这个长方形就是一个四角同是红色的长方形。
(2)这三行中每一行前面的10格中,都至多有一个红色的小方格,不妨设它们分别出现在前三列中,那么其余的3×7个小方格便只能涂上黄、蓝两种颜色了。
我们先考虑这个3×7的长方形的第一行。根据抽屉原理,至少有4个小方格是涂上同一颜色的,不妨设其为蓝色,且在第1至4列。
再考虑第二行的前四列,这时也有两种可能:
(1)这4格中,至少有2格被涂上蓝色,那么这2个涂上蓝色的小方格和第一行中与其对应的2个小方格便是一个长方形的四个角,这个长方形四角同是蓝色。
(2)这4格中,至多有1格被涂上蓝色,那么,至少有3格被涂上黄色。不妨设这3个小方格就在第二行的前面3格。
下面继续考虑第三行前面3格的情况。用蓝、黄两色涂3个小方格,由抽屉原理知,至少有2个方格是同色的,无论是同为蓝色或是同为黄色,都可以得到一个四角同色的长方形。
总之,对于各种可能的情况,都能找到一个四角同色的长方形。
例12 试卷上共有4道选择题,每题有3个可供选择的答案。一群学生参加考试,结果是对于其中任何3人,都有一道题目的答案互不相同。问:参加考试的学生最多有多少人?
解:设每题的三个选择分别为a,b,c。
(1)若参加考试的学生有10人,则由第二抽屉原理知,第一题答案分别为a,b,c的三组学生中,必有一组不超过3人。去掉这组学生,在余下的学生中,定有7人对第一题的答案只有两种。对于这7人关于第二题应用第二抽屉原理知,其中必可选出5人,他们关于第二题的答案只有两种可能。对于这5人关于第三题应用第二抽屉原理知,可以选出4人,他们关于第三题的答案只有两种可能。最后,对于这4人关于第四题应用第二抽屉原理知,必可选出3人,他们关于第四题的答案也只有两种。于是,对于这3人来说,没有一道题目的答案是互不相同的,这不符合题目的要求。可见,所求的最多人数不超过9人。
另一方面,若9个人的答案如下表所示,则每3人都至少有一个问题的答案互不相同。

所以,所求的最多人数为9人。
练习13
1.六(1)班有49名学生。数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。”请问王老师说得对吗?为什么?
2.现有64只乒乓球,18个乒乓球盒,每个盒子里最多可以放6只乒乓球,至少有几个乒乓球盒子里的乒乓球数目相同?
3.某校初二年级学生身高的厘米数都为整数,且都不大于160厘米,不小于150厘米。问:在至少多少个初二学生中一定能有4个人身高相同?
4.从1,2,…,100这100个数中任意选出51个数,证明在这51个数中,一定:
(1)有两个数的和为101;
(2)有一个数是另一个数的倍数;
(3)有一个数或若干个数的和是51的倍数。
5.在3×7的方格表中,有11个白格,证明
(1)若仅含一个白格的列只有3列,则在其余的4列中每列都恰有两个白格;
(2)只有一个白格的列只有3列。
6.某个委员会开了40次会议,每次会议有10人出席。已知任何两个委员不会同时开两次或更多的会议。问:这个委员会的人数能够多于60人吗?为什么?
7.一个车间有一条生产流水线,由5台机器组成,只有每台机器都开动时,这条流水线才能工作。总共有8个工人在这条流水线上工作。在每一个工作日内,这些工人中只有5名到场。为了保证生产,要对这8名工人进行培训,每人学一种机器的操作方法称为一轮。问:最少要进行多少轮培训,才能使任意5个工人上班而流水线总能工作?
8.有9名数学家,每人至多能讲3种语言,每3人中至少有2人能通话。求证:在这9名中至少有3名用同一种语言通话。

练习13
1.对。解:因为49-3=3×(100-86+1)+1,即46=3×15+1,也就是说,把从100分至86分的15个分数当做抽屉,49-3=46(人)的成绩当做物体,根据第二抽屉原理,至少有4人的分数在同一抽屉中,即成绩相同。
2.4个。解:18个乒乓球盒,每个盒子里至多可以放6只乒乓球。为使相同乒乓球个数的盒子尽可能少,可以这样放:先把盒子分成6份,每份有18÷6=3(只),分别在每一份的3个盒子中放入1只、2只、3只、4只、5只、6只乒乓球,即3个盒子中放了1只乒乓球,3个盒中放了2只乒乓球……3个盒子中放了6只乒乓球。这样,18个盒子中共放了乒乓球
(1+2+3+4+5+6)×3=63(只)。
把以上6种不同的放法当做抽屉,这样剩下64-63=1(只)乒乓球不管放入哪一个抽屉里的任何一个盒子里(除已放满6只乒乓球的抽屉外),都将使该盒子中的乒乓球数增加1只,这时与比该抽屉每盒乒乓数多1的抽屉中的3个盒子里的乒乓球数相等。例如剩下的1只乒乓球放进原来有2只乒乓球的一个盒子里,该盒乒乓球就成了3只,再加上原来装有3只乒乓球的3个盒子,这样就有4个盒子里装有3个乒乓球。所以至少有4个乒乓球盒里的乒乓球数目相同。
3.34个。
解:把初二学生的身高厘米数作为抽屉,共有抽屉
160-150+1=11(个)。
根据抽屉原理,要保证有4个人身高相同,至少要有初二学生
3×11+1=34(个)。
4.证:(1)将100个数分成50组:
{1,100},{2,99},…,{50,51}。
在选出的51个数中,必有两数属于同一组,这一组的两数之和为101。
(2)将100个数分成10组:
{1,2,4,8,16,32,64}, {3,6,12,24,48,96},
{5,10,20,40,80}, {7,14,28,56},
{9,18,36,72}, {11,22,44,88},
{13,26,52}, {15,30,60},…,
{49,98}, {其余数}。
其中第10组中有41个数。在选出的51个数中,第10组的41个数全部选中,还有10个数从前9组中选,必有两数属于同一组,这一组中的任意两个数,一个是另一个的倍数。
(3)将选出的51个数排成一列:
a1,a2,a3,…,a51。
考虑下面的51个和:
a1,a1+a2,a1+a2+a3,…,
a1+a2+a3+…+a51。
若这51个和中有一个是51的倍数,则结论显然成立;若这51个和中没有一个是51的倍数,则将它们除以51,余数只能是1,2,…,50中的一个,故必然有两个的余数是相同的,这两个和的差是51的倍数,而这个差显然是这51个数(a1,a2, a3,…,a51)中的一个数或若干个数的和。
5.证:(1)在其余4列中如有一列含有3个白格,则剩下的5个白格要放入3列中,将3列表格看做3个抽屉,5个白格看做5个苹果,根据第二抽屉原理,5(=2×3-1)个苹果放入3个抽屉,则必有1个抽屉至多只有(2-1)个苹果,即必有1列只含1个白格,也就是说除了原来3列只含一个白格外还有1列含1个白格,这与题设只有1个白格的列只有3列矛盾。所以不会有1列有3个白格,当然也不能再有1列只有1个白格。推知其余4列每列恰好有2个白格。
(2)假设只含1个白格的列有2列,那么剩下的9个白格要放入5列中,而9=2×5-1,由第二抽屉原理知,必有1列至多只有2-1=1(个)白格,与假设只有2列每列只1个白格矛盾。所以只有1个白格的列至少有3列。
6.能。
解:开会的“人次”有 40×10=400(人次)。设委员人数为N,将“人次”看做苹果,以委员人数作为抽屉。
若N≤60,则由抽屉原理知至少有一个委员开了7次(或更多次)会。但由已知条件知没有一个人与这位委员同开过两次(或更多次)的会,故他所参加的每一次会的另外9个人是不相同的,从而至少有 7×9=63(个)委员,这与N≤60的假定矛盾。所以,N应大于60。
7.20轮。
解:如果培训的总轮数少于20,那么在每一台机器上可进行工作的工人 果这3个工人某一天都没有到车间来,那么这台机器就不能开动,整个流水线就不能工作。故培训的总轮数不能少于20。
另一方面,只要进行20轮培训就够了。对3名工人进行全能性培训,训练他们会开每一台机器;而对其余5名工人,每人只培训一轮,让他们每人能开动一台机器。这个方案实施后,不论哪5名工人上班,流水线总能工作。
8.证:以平面上9个点A1,A2,…,A9表示9个数学家,如果两人能通话,就把表示他们的两点联线,并涂上一种颜色(不同的语言涂上不同颜色)。此时有两种情况:
(1)9点中有任意2点都有联线,并涂了相应的颜色。于是从某一点A1出发,分别与A2,A3,…,A9联线,又据题意,每人至多能讲3种语言,因此A1A2,A1A3,…,A1A9中至多只能涂3种不同的颜色,由抽屉原理知,这8条线段中至少有2条同色的线段。不妨设A1A2与A1A3是同色线段,因此A1,A2,A3这3点表示的3名数学家可用同一种语言通话。
(2)9点中至少有2点不联线,不妨设是A1与A2不联线。由于每3人中至少有两人能通话,因此从A1与A2出发至少有7条联线。再由抽屉原理知,其中必有4条联线从A1或A2 出发。不妨设从A1出发,又因A1至多能讲3种语言,所以这4条联线中,至少有2条联线是同色的。若A1A3与A1A4同色,则A1,A3,A4这3点表示的3名数学家可用同一种语言通话。
离散最值问题
在国内外数学竞赛中,常出现一些在自然数范围内变化的量的最值问题,我们称之为离散最值问题。解决这类非常规问题,尚无统一的方法,对不同的题目要用不同的策略和方法,就具体的题目而言,大致可从以下几个方面着手:
1.着眼于极端情形;
2.分析推理——确定最值;
3.枚举比较——确定最值;
4.估计并构造。
例1 一把钥匙只能开一把锁,现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最少试多少次,就一定能使全部的钥匙和锁相匹配?
解:开第1把锁,若不凑巧,试3把钥匙还没有成功,则第4把不用再试了,它一定能打开这把锁。同理,开第2把锁最多试2次,开第3把锁最多试1次,最后剩下的1把钥匙一定能打开剩下的第4把锁,而用不着再试。这样最多要试的次数为
3+2+1=6(次)。
说明:在“最凑巧”的情况下,只需试3次就可使全部的钥匙和锁相匹配。本题中要求满足任何情况,所以应从“最不凑巧”的情况考虑问题。
例2 一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”。小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的?
解:假设摸出的8个球全是红球,则数字之和为(4×8=)32,与实际的和39相差7,这是因为将摸出的黄球、绿球都当成是红球的缘故。
用一个绿球换一个红球,数字和可增加(6-4=)2,用一个黄球换一个红球,数字和可增加(5-4=)1。为了使红球尽可能地多,应该多用绿球换红球,现在7÷2=3……1,因此可用3个绿球换红球,再用一个黄球换红球,这样8个球的数字之和正好等于39。所以要使8个球的数字之和为39,其中最多可能有(8-3-1=)4个是红球。
例3 红星小学的礼堂里共有座位24排,每排有30个座位,全校650个同学坐到礼堂里开会,至少有多少排座位上坐的学生人数同样多?
解:从极端情形考虑,假设24排座位上坐的人数都不一样多,那么最多能坐

假设只有2排座位上坐的学生人数同样多,那么,最多能坐

假设只有3排座位上坐的学生人数同样多,那么,最多能坐

而题中说全校共有学生650人,因此必定还有(650-636=)14人要坐在这24排中的某些排座位上,所以其中至少有4排座位上坐的学生人数同样多。
说明:(1)若问最多有多少排座位上坐的学生人数同样多,你会解吗?这个问题留给读者研究。
(2)从极端情形入手,着眼于极端情形,是求解最值问题的有效手段。如例1中从最不凑巧的情形看,用n把钥匙开1把锁要开n次才能打开,例2从摸出的8个球全是红球这种极端情形入手,再进行逐步调整。

解:本题实质上是确定n的最小值,利用被11整除的数的特征知:一个数能被11整除,当且仅当该数的偶位数字的和与奇位数字的和之差能被11整除。该数的偶位数字之和为18n+2,奇位数字之和为10n+5。两者之差为
18n+2-(10n+5)=8n-3。
要使(8n-3)为11的倍数,不难看出最小的n=10,故所求最小数为

说明:本题采用分析、推理的方法来确定最值,这也是解离散最值问题的一种常用方法。

×EFG的最大值与最小值相差多少?

解:由右式知,A=1,D+G=3或13,由于A,D,G为不同数字,故D+G≠3,因此 D+ G=13;C+F=8或18,但 C≠F,故只有 C+F=8,
数,为使数字不重复,只有取E=7(B=2),F=5(C=3),G=9(D=4),
E=2(B=7),F=3(C=5),G=4(D=9),即当

1234×759-1759×234
=1234×(234+525)-(1234+525)×234
=(1234—234)×525=525000。
例6 某公共汽车从起点开往终点站,中途共有13个停车站。如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,正好各有一位乘客从这一站到以后的每一站,那么为了使每位乘客都有座位,这辆公共汽车至少应有多少个座位?
解法1:只需求车上最多有多少人。依题意列表如下:

由上表可见,车上最多有56人,这就是说至少应有56个座位。
说明:本题问句出现了“至少”二字是就座位而言的,座位最少有多少,取决于什么时候车上人数最多,要保证乘客中每人都有座位,应准备的座位至少应当等于乘客最多时的人数。所以,我们不能只看表面现象,误认为有了“至少”就是求最小数,而应该把题意分析清楚后再作判断。
解法2:因为车从某一站开出时,以前各站都有同样多的人数到以后各站(每站1人),这一人数也和本站上车的人数一样多,因此
车开出时人数=(以前的站数+1)×以后站数
=站号×(15-站号)。
因此只要比较下列数的大小:
1×14, 2×13, 3×12, 4×11, 5×10,
6×9, 7×8, 8×7, 9×6, 10×5,
11×4, 12×3, 13×2, 14×1。
由这些数,得知7×8和8×7是最大值,也就是车上乘客最多时的人数是56人,所以它应有56个座位。
说明:此题的两种解法都是采用的枚举法,枚举法是求解离散最值问题的基本方法。这种方法的大意是:将问题所涉及的对象一一列出,逐一比较从中找出最值;或者将与问题相关的各种情况逐一考察,最后归纳出需要的结论。
例7 在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式。要求:(1)算式的结果等于37;(2)这个算式中的所有减数(前面添了减号的数)的乘积尽可能地大。那么,这些减数的最大乘积是多少?
解:把10个数都添上加号,它们的和是55,如果把其中一个数的前面的加号换成减号,使这个数成为减数,那么和数将要减少这个数的2倍。
因为55-37=18,所以我们变成减数的这些数之和是18÷2=9。对于大于2的数来说,两数之和总是比两数乘积小,为了使这些减数的乘积尽可能大,减数越多越好(不包括1)。9最多可拆成三数之和2+3+4=9,因此这些减数的最大乘积是2×3×4=24,添上加、减号的算式是
10 + 9+ 8+ 7 + 6+ 5- 4- 3- 2 +1=37。
例8 设a1,a2,a3,a4,a5,a6是1到9中任意6个不同的正整数,并且a1<a2<a3<a4<a5<a6。试用这6个数分别组成2个三位数,使它们的乘积最大。
分析与解:由于a1,…,a6具体大小不清楚,因此先取特殊数1,2,3,4,5,6这6个不同的数考虑。要使2个三位数的乘积最大,必须使这2个数的百位数最大,应分别是6,5;而十位数次大,应分别为4,3,个位数最小,应分别为2,1。
因为当2个数之和一定时,这2个数之差越小,它们的乘积越大,所以这2个数是631和542。

例9 8个互不相同的自然数的总和是56,如果去掉最大的数及最小的数,那么剩下的数的总和是44。问:剩下的数中,最小的数是多少?
解:因为最大数与最小数的和是56-44=12,所以最大数不会超过11。去掉最大和最小数后剩下的6个互不相同的自然数在2~10之间,且总和

去书店买书去,很丰富的

要哪一科的啊?中小学各科都有哦!--包括语文!
www.chinese163.com/wz
里面去找找吧!