南昌大学医学院位于:熵增有个最大限度吗

来源:百度文库 编辑:杭州交通信息网 时间:2024/05/11 02:46:16

熵有个最大值,达到这个值,系统的状态就均匀,宏观上停止变化。

就现有水平认为,宇宙达到这个最大值,就死去了,不再有星星产生,不再有能量移动,叫做“死寂”。

就是"热寂",此时一切的物质处于无规则的布朗运动,系统中的所有的能量全部变成内能,不可能在做功.

此时的宇宙就以经"死去"了.

熵增加原理
entropy increase,principle of

热力学过程中熵变化的原理,热力学第二定律的定量表述。见熵,热力学第二定律


entropy

描述热力学系统的重要态函数之一。熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为热力学第二定律提供了定量表述。
为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有 ,式中Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。可逆循环的表明存在着一个态函数熵,定义为

对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。这就是熵增加原理。由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。
能量是物质运动的一种量度,形式多样,可以相互转换。某种形式的能量如内能越多表明可供转换的潜力越大。熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了 。 内能 、 熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。
从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。
在信息论中,熵可用作某事件不确定度的量度。信息量越大,体系结构越规则,功能越完善,熵就越小。利用熵的概念 ,可以从理论上研究信息的计量 、传递 、变换 、存储。此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。

热力学第二定律
thermodynamics,second law of

关于一切涉及热现象的实际宏观过程方向的热力学定律。它指出,一切涉及热现象的实际宏观过程都是不可逆过程。
机械运动、电磁运动中的各种不涉及热现象的过程都是可逆的,可以正向进行,也可以逆向进行,逆过程的每一步都与正过程相同,只是次序相反。但是,功变热量、热传导、自由膨胀等涉及热现象的过程却都不能自动地逆向进行,使系统和外界完全复原。热机把热变为功,热力学第一定律断言其效率不可能大于1,但能否接近或达到100%呢?换言之,物体的机械能可以通过摩擦、阻尼、内耗等方式自发地全部转化为系统的内能;反之,系统的内能能否自发地转化为机械能而不产生其他影响呢?卡诺定理指出,这是不可能的 ,因为存在着某种理论上的限制。由此可见,尽管热量和功都是传递的能量,都是过程量,可按热功当量换算;但也有重要的区别,作功是通过系统整体的宏观位移实现的,传热则是通过组成系统的大量分子的无规则热运动和相互之间的作用实现的。热功转换是系统内分子无规则热运动能量与系统有规则整体运动能量之间的转换。这种转换不仅在总量上要守恒以满足热力学第一定律,而且还必须在转换的方向和限度上受到限制。这正是热运动区别于其他运动形式的特殊本质。热力学第二定律就是这一特征的概括。
热力学第二定律有多种表述方式,常用的是以下两种 。①开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其他影响。或第二类永动机是不可能造成的。第二类永动机是能从单一热源吸取热量并使之完全变为有用的功而不产生其他影响的机器。虽然,它并不违反第一定律。②克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其他影响。这两种表述分别揭示了热功转换过程和热传导过程的不可逆性。可以证明两种表述完全等价 。这表明,各种不可逆过程具有深刻的内在联系。因此,可以选用任何一种特殊的不可逆过程来表述普遍的规律。无论采用何种表述,热力学第二定律的实质是指明,在一切涉及热现象的实际宏观过程中,能量转换或传递的方向、条件和限度。
态函数熵为热力学第二定律提供了定量表述,熵的微观含义揭示了热力学第二定律的微观本质和统计意义