乐果音箱图片:兄弟姐妹们,帮帮忙,翻译一篇文章,急用!!!

来源:百度文库 编辑:杭州交通信息网 时间:2024/04/28 06:50:12
Electronic interactions occur at the point of contact
of the different phases (heterojunction), leading to the
transfer of charge carriers across this junction, when
two or more semiconductors are in contact. The basic
concept is that the photogenerated charge carriers in
the excited semiconductor can be transferred to the
second semiconductor if this is thermodynamically
feasible.
When examining the relative positions of the valence
band and the conduction bands in Table 2, it is
evident that it is in fact thermodynamically feasible for
the generated electrons in titanium dioxide to be transferred
to the lower lying conduction band of any the
iron oxides phases present, while the photogenerated
holes may also be transferred to the upper lying valence
bands of the iron oxides. The narrower bandgap
of the iron oxides is thought to lead to an increase in
the incidence of electron-hole recombination, lowering
the photoactivity, while the continuous hopping
between Fe2+ and Fe3+ in the magnetite lattice has
been reported to enhance electron–hole recombination
[8]. The lower oxidising power and reducing
power of the of the available electrons and holes once
transferred to the iron oxide phase, as suggested by
Litter and Navio [9], can also be translated into lower
photoactivity.
The photodissolution of the iron oxide phase puts
forward the possibility of the occurrence of competing
reactions with the oxidation reaction of sucrose.
The main competing reaction of concern is the oxidation
of the dissolved Fe2+ back to Fe3+. The possible
occurrence of this back reaction has been suggested
by a number of people and is thought to involve the
Fe2+ competing with the sucrose molecule for the
photogenerated holes (or OH•) [6,10–13]. These back
reactions may hinder the oxidation of the organic (even though the photodissolution mechanism itself
might in fact lead to an enhanced charge separation).
The photodissolution results enabled us to make
a very important conclusion regarding the driving
force behind the photodissolution observed. It is clear
that the stability of the coated particles is highly
dependent on the nature of the titanium dioxide.
This conclusion was made upon comparison between
the levels of photodissolution of uncoated magnetite
samples (sample 1), coated-uncalcined samples
(sample 2), and coated-calcined samples (sample
3). While both the bare magnetite particles and the
uncalcined-coated samples exhibited minimal photodissolution,
the coated-calcined samples, made up of
iron oxide in direct contact with a crystalline titanium
dioxide phase, showed very high photodissolution
levels.

电子的交互作用在接点发生
不同的时期 (异质接面), 领先到那
横过这一个联接的费用运送者的移动, 当
二或较多的半导体保持接触。 基本
观念是 photogenerated 要价运送者进入
兴奋半导体能被转移到那
秒半导体如果这热力学地
能实行的。
当检查原子价的比较位置的时候
表 2 的乐团和传导乐团, 它是
显然的那它事实上热力学能实行对
钛二氧化物的被产生的电子被转移
对比较低的横躺传导乐团任何的那
氧化铁时期呈现, 当 photogenerated的时候
洞也可能被转移到上面的横躺原子价
氧化铁的乐团。 较狭窄的 bandgap
氧化铁被认为导致的增加
电子- 洞复合的影响之方式, 使卑劣的
photoactivity, 当连续单脚跳的时候
在 Fe2 之间+ 和 Fe3+ 在磁铁矿格子中有
被报告提高电子–洞复合
[8]. 比较低的使氧化力量而且减少
力量那可得的电子和洞一次
转移到氧化铁状态, 当做建议被
垃圾和 Navio[9], 也能被转变为比较低的
photoactivity。
氧化铁状态的 photodissolution 放
转寄竞争的发生可能性
和蔗糖的氧化反应的反应。
竞争关心的反应主要部份是氧化
被溶解的 Fe2+向后地到 Fe3+. 那可能的
这背面反应的发生已经被建议
藉着若干人而且被认为包括那
Fe2+ 以蔗糖分子竞争为那
photogenerated 挖洞 ( 或哦?) [6,10 – 13]. 这些背面
反应可能阻碍有机人的氧化 ( 即使 photodissolution 机制本身
可能事实上导致可提高的费用分离).
photodissolution 结果使我们能够了制造
关于驾驶的一个非常重要的结论
在被观察的 photodissolution 后面强迫。 资讯科技是清楚的
涂上一层的粒子安定高度地
在钛二氧化物的性质上的受扶养者。
这一个结论在比较之上被做在
不涂上一层磁铁矿的 photodissolution 的水平
样品 (样品 1),涂上一层的- 不烧成石灰了样品
(样品 2), 和涂上一层的- 烧成石灰了样品 ( 样品
3)。 那两赤裸的磁铁矿粒子和那
不烧成石灰-涂上一层的样品展现了最小的 photodissolution,
涂上一层者-烧成石灰样品, 组成
与一个水晶的钛直接的接触氧化铁
二氧化物状态, 表示了非常高的 photodissolution
水平。