大开曼岛风光:英语高手请进15

来源:百度文库 编辑:杭州交通信息网 时间:2024/05/13 06:56:01
The columns were assumed to have full end fixity and
therefore both translational and rotational restraints were
applied to the end of the columns. Constraint equations were
employed at the loaded end of the columns to ensure that
the vertical displacement of the end nodes were constant, and
therefore remained in a horizontal plane. Global imperfections
of the form of a single half sine wave were added to the
columns. Imperfection amplitudes were taken as the measured
values from the test specimens; these ranged between 1 and
4 mm. The two modelled beams were simply supported, so
vertical restraints only were used to model the supports. One
quarter of each beam was modelled, with symmetry boundary
conditions applied along the vertical centreline of the crosssection
and a mid-span. Load was applied through the webs
of the beams. In the bending test configuration, failure is in
the plane of the loading, and therefore relatively insensitive to
imperfections; hence imperfections were excluded from these
models.
The results of the numerical analyses are summarised in
Table 12, and comparison is made with the corresponding test
values. The FE models consistently predicted slightly lower
critical temperatures than those attained in the tests. This
slight under-prediction may be due to neglecting the enhanced
strength in the corner regions of the cross-section or the
application of a uniform temperature development along the
length of the member, whilst in the test the members were
protected from direct heat application near the supports. For
the I-section column, non-uniform temperature development
around the cross-section was observed. This non-uniformity
was introduced into the numerical models and resulted in
similar lateral deflection versus time behaviour as displayed by
the test.
Parametric studies on the columns were carried out to
investigate the effect of varying the load ratio, member nondimensional
slenderness, and cross-sectional slenderness. On
the beams, parametric studies were conducted to investigate
variations in the load ratio and the cross-section slenderness.
Results of the parametric studies are described elsewhere [10].

假设柱端部全部固定,因此柱端没有平动或转动的自由。约束方程用于柱端负载以确保端部结点的垂直位移是恒定的,因此保留在一个水平面上。加在柱上的简单的半正弦波的形成普遍不是理想的。不完整性幅度作为供试样品的测量值; 这些在1 -4 mm之间. 两个梁模型简单地支撑,因此垂直限制仅用于支撑模型. 每个梁的1/4被建模,沿横截面的中垂线和平分线构成对称的边界条件.通过梁网加上负载.在屈曲测试构造中, 破坏在负载平面发生, 相应地对不完整性不敏感; 因此不完整性从这些模型中排除。数值分析的结果总结于表12,并和相应的测量值进行比较。FE 模型和测试中达到的略低的临界温度一致. 微小的预测失败可能是由于忽视了横截面角部区域的增大的应力或者沿构件经向的均匀温度变化的应用,而本测试中构件避免了直接受热。对于I-面柱来说,观察到了横截面周围非均衡温度变化。这种非均衡性被引入数值模型并且结果造成如实验所演示的相似的侧面偏差-时间行为。柱参数研究研究了不同负载率、构件非三维细长度和横截面细长度的影响。梁的参数研究用于研究负载率的方差和横截面 细长度。参数研究结果在其他地方描述 [10].

专栏被假定有完全的结束固定和
因此平移的和回转的抑制是
为那目的专栏应用。 限制相等是
在专栏的被装载的结束雇用确定
结束节的垂直换置是不变的, 和
在一个水平的飞机中因此保持。 全球的不完全
单一一半的正弦波的形式被增加到那
专栏。 不完全广阔被拿当做那量过的
来自测试样品的价值; 这些排列在 1之间和
4 毫米。 二被做模型的光线被只是支援, 如此
垂直的抑制只用来做模型支持。 一
四分之一的每光线被做模型, 藉由对称边界
沿着 crosssection 的垂直 centreline 被应用的情况
而且一个中部-指距。 负荷经过网被应用
光线。 在那个弯曲测试结构中,失败是在
载入的飞机, 因此相对地对到没有感觉的
不完全; 不完全由此而来被排除在这些之外
模型。
数字者的结果分析是概述在
表 12, 而且比较与对应的测试一起做
价值。 FE 模型些微地一致地预知比较低的
紧要关头的温度比较那些在测试中达到。 这
轻蔑在- 之下预言可能是适当的到疏忽那可提高的
跨区段的角落区域的力量或那
制服温度发展的申请向前那
成员的长度, 在测试中的一会儿成员是
从在支持附近的直接热申请保护。 为
那我-区段专栏, 非统一的温度发展
在跨的周围,区段被观察。 这个非同样
进入数字的模型之内被介绍并且造成
相似的侧面歪斜和时间比较行为当做显示被
测试。
在专栏上的参数研究被实行到
调查改变负荷比,非空间的成员效果
苗条 , 和跨部份的苗条。 在
光线, 参数的研究被引导调查
负荷比和跨区段苗条的变化。
参数的研究结果被描述在别处 [10].

哈~这样找翻译果然高效!

据估计,该栏目已全部结束,佳 因此,无论是限制式和translational 申请的最后一个栏. 方程被限制 在就业上月底的栏目,以确保 垂直迁移结束节点不变, 因此,保持横向机. 全球缺陷 单一的形式又增加了50正弦波 专栏. 面采取简单的测量 从检验标本价值; 这些介乎1、 4毫米. 两束模式只是支持, 纵向限制只能用于支持该模式. 一 每季度束模式,对称边界 申请条件沿纵向的复crosssection 一、中跨度. 通过采用负荷网 <束. 在弯曲试验的配置,是不 这架飞机上的,因此,相对忽视 不完善; 因此,不排除这些人 模型. 数值分析结果摘要 表12、取得相应的比较试验 价值. 菲模型的预测一致略低 达到临界温度比试验. 本 稍有不足,可能是忽视了预测提高 在角落地区的兵力截面或 采用统一开发沿线温度 长度的成员,但在测试成员 热直接应用免受附近支持. 为 我的第栏、非统一气温发展 各地截面观察. 这种不统一 引进数字模型,从而 横向偏转类似行为时所表现出来的还是 测试. 参数进行了研究,以专栏 调查不同负荷率的影响,成员nondimensional 爱情、跨部门爱情. 关于 横梁、参数研究进行调查 负载变动率及截面爱情. 参数研究结果说明其他10.

The columns were assumed to have full end fixity and
therefore both translational and rotational restraints were
applied to the end of the columns. Constraint equations were
employed at the loaded end of the columns to ensure that
the vertical displacement of the end nodes were constant, and
therefore remained in a horizontal plane. Global imperfections
of the form of a single half sine wave were added to the
columns. Imperfection amplitudes were taken as the measured
values from the test specimens; these ranged between 1 and
4 mm. The two modelled beams were simply supported, so
vertical restraints only were used to model the supports. One
quarter of each beam was modelled, with symmetry boundary
conditions applied along the vertical centreline of the crosssection
and a mid-span. Load was applied through the webs
of the beams. In the bending test configuration, failure is in
the plane of the loading, and therefore relatively insensitive to
imperfections; hence imperfections were excluded from these
models.
The results of the numerical analyses are summarised in
Table 12, and comparison is made with the corresponding test
values. The FE models consistently predicted slightly lower
critical temperatures than those attained in the tests. This
slight under-prediction may be due to neglecting the enhanced
strength in the corner regions of the cross-section or the
application of a uniform temperature development along the
length of the member, whilst in the test the members were
protected from direct heat application near the supports. For
the I-section column, non-uniform temperature development
around the cross-section was observed. This non-uniformity
was introduced into the numerical models and resulted in
similar lateral deflection versus time behaviour as displayed by
the test.
Parametric studies on the columns were carried out to
investigate the effect of varying the load ratio, member nondimensional
slenderness, and cross-sectional slenderness. On
the beams, parametric studies were conducted to investigate
variations in the load ratio and the cross-section slenderness.
Results of the parametric studies are described elsewhere [10].

专栏假设有充分的结尾固定性和

因此平移和旋转的克制是

适用于专栏的末端。 约束方程是

使用在专栏的被装载的末端保证那

结尾结的垂直的位移是恒定的,和

因此保持在一个平面。 全球性缺点

一个唯一半正弦波的形式增加了到

专栏。缺点高度被采取了作为被测量的

价值从测试标本; 这些排列了在1之间和

4毫米. 简单地支持二条被塑造的射线,如此

仅垂直式贸易限制用于塑造支持。 一

处所每条射线塑造了,以对称界限

情况沿横断面的垂直的中心线申请了

并且中间间距。装载通过网是应用的

射线。 在弯曲试验配置,失败

装货的飞机,并且相对地厚脸皮

缺点; 因此缺点从这些被排除了

模型。

数据分析的结果总结

表12和比较用对应的测试做

价值。 FE 模型一贯地被预言的轻微地低

临界温度比在测试获得的那些。 这

也许归结于忽略改进的轻微的在之下预言

力量在横断面的壁角地区或

一致的温度发展的应用沿

成员的长度,在测试成员是

保护免受直接热应用在支持附近。 为

我部分专栏,不均匀的温度发展

在横断面附近被观察了。 这不均匀

被介绍了入数字模型并且发生了

相似的侧向偏折对时间行为如被显示

测试。

关于专栏的参数研究被执行了

调查变化装载比率的作用,成员nondimensional

苗条和横截苗条。 在

射线,参数研究被举办调查

在装载比率和短剖面苗条上的变化。

参数研究的结果在别处被描述[10]。

相信我,绝对正确!!!!!!!!!!!!!!!!!!!!!!!!!!