自动放排气阀原理图:翻译—语言是最厚的墙2

来源:百度文库 编辑:杭州交通信息网 时间:2024/05/02 08:48:44
Previous studies of Cu-ZnO catalysts for the WGS reaction suggest that a synergy exists between copper and zinc oxide [29-31]. Mellor also found that stability of the catalyst improved significantly on adding zinc oxide, but that the total activity was lower because precipitated ZnO blocked part of the surface area [27,32]. From Fig. 1 it can be seen that small amounts of ZnO (<1 wt.%) did not affect the apparent copper surface area. Thus, the influence on the activity of the WGS reaction was insignificant (Fig. 4).

Vannice [33] studied the relationship of the activity over metal catalysts and the strength of interaction of CO with the metal. He postulated that the heat of adsorption of CO is a substantial parameter and developed a typical volcano-shaped plot. Thereafter, the kinetics of WGS reaction over supported metal catalysts were measured by Grenoble and Estadt [34]. A plot of turnover rate of the alumina-supported metals for WGS as a function of their periodic table position revealed that the igh-activity,low-temperature water gas shift catalyst is copper. Cobalt

was found to be the most active in Group VIII metals. However, such activity was found to be 50 times lower than that of metallic copper, based on turnover numbers measured at 673K [34]. Grenoble and Estadt [34] produced a volcano plot of turnover numbers versus heat of CO adsorption to explain their results.
In this study, both CO chemisorption and WGS activities were evaluated over the highest Co doped skeletal
copper sample and pure skeletal copper, and are listed in Table 2. The results show that CO chemisorption for the Co-doped skeletal copper catalyst is nearly half the value of that obtained for the pure skeletal copper catalyst, whilst the activity for the WGS reaction decreased almost 40-fold.

手工翻译。

以往关于在WGS反应中的钴-氧化锌催化剂的研究表明在铜和锌氧化物中存在协同作用[29-31]。Mellor也发现添加锌氧化物将会提高催化,但是总活动性将下降,这是因为氧化锌的沉淀阻止了部分表面区域 [27,32]。从图1可以刊出,少量的氧化锌(小于 1wt %)不能影响铜表面区域。因此,WGS反应的活动性影响就微不足道了(如图4)。

Vannice [33]研究了金属催化剂活动性与一氧化碳和金属交互反应中的关系。他假设一氧化碳的吸附是常数,然后画出了一条火山形的曲线。之后,Grenoble和Estadt [34]分析了金属氧化物支持的WGS反应的动力分析。氧化铝金属的WGS的反转率是它们在周期表上位置的函数,这表明铜是高活动性,低温水煤气转换催化剂。

钴是VIII组金属中最活跃的。然后,根据在673k温度下的翻转数计算[34],金属铜的活跃性比钴的活跃性强50倍。 Grenoble和Estadt [34]的研究的得到了关于一氧化碳吸收量的火山性的翻转数曲线,并解释了他们的结果。在该文中,表2列出了在最高搀有钴的铜骨骼样品和纯骨骼铜钟的一氧化碳吸收和WGS的活动性。结果表明,搀有钴的铜骨骼样品中的一氧化碳吸收量是纯铜骨骼样品的一半,同时,WGS反应的活动性也下降了40-fold.

以前的研究兑换保证,ZNO反应器的表显示之间的协同和铜氧化锌[29-31]. Mellor还发现,在稳定的增加大大改善催化剂氧化锌,但总的要低,因为活动引起部分阻塞Zno面积[27,32]. 从580人. 1可以看出,少量ZNO("一基金. %)没有明显影响铜面积. 因此,活动的影响是微不足道的反应表(附图4). 33Vannice关系的研究活动,推动了金属的力量,共同交流与金属. 他推测,热加工参数和共同发展,是相当典型的火山型阴谋. 此后,Kinetics组的支持金属反应器,是衡量Estadt格勒诺布尔34. 一块周转率的铝-金属表支持函数表定期立场发现室内运动场,活动,低温水气转移催化剂是铜. 电池被认为是最活跃的第八组金属. 然而,这种活动被认为是低于50倍,金属铜,按营业额计算的数字673k34. 格勒诺布尔Estadt,产生了34多火山阴谋成交量与热物共同解释结果. 在这项研究中,联合组活动,chemisorption最高评价了共同认知和纯骨骼骨骼样本铜铜,列在表2. 结果显示,联合chemisorption的共同认知骨架铜催化剂是近一半的价值,获得的纯铜骨架催化,而活动的反应则表将近40倍.