中国玛瑙:晶体衍射现象是什麽?

来源:百度文库 编辑:杭州交通信息网 时间:2024/05/05 06:51:36

现代遗传学之父,奥地利生物学家格雷戈尔·孟德尔(Johann Gregor Mendel,1822~1884)并未描述过基因,也没有观测到基因以及使用基因这个词。但这位奥地利传教士发现了遗传定律,他通过繁育豌豆,画出其结果图,就得出了卓越的结论。孟德尔发现,在预先可测知规律下控制的组合,父母可将其独特的特性传给子女。

20世纪初,科学家判定必然是某些实际的物质携带这种特性,创立了基因(gene)这个词,以后又证明了基因的化学本质是DNA分子。1953年,发现了DNA的双螺旋结构。

孟德尔出生在奥地利的一个贫寒的农民家庭里,受同为园艺家的父母的熏陶,他从小喜爱植物。他先在当地教会办的一所中学教自然科学,后来到维也纳大学深造,受到相当系统和严格的科学教育与训练,为后来的科学实践打下了坚实的基础。

孟德尔回到布鲁恩后弄来了34个品种的豌豆,从中挑选出22个品种用于实验。它们都具有某种可以相互区分的稳定性状,例如高茎或矮茎、圆料或皱科、灰色种皮或白色种皮等。

孟德尔豌豆实验的初衷并不是有意为探索遗传规律而进行,他只是希望获得优良品种,在试验的过程中,逐步把重点转向了探索遗传规律。孟德尔开始进行豌豆实验时,达尔文进化论刚刚问世。他仔细研读了达尔文的著作,从中吸收丰富的营养,并对人工培植的不同代的豌豆的性状和数目进行细致入微的观察、计数和分析。运用这样的实验方法需要极大的耐心和严谨的态度。经过8个寒暑的辛勤劳作,孟德尔发现了生物遗传的基本规律,并得到了相应的数学关系式。人们分别称他的发现为“孟德尔第一定律——分离定律”和“孟德尔第二定律——独立分配定律”,它们揭示了生物遗传奥秘的基本规律。除了豌豆以外,孟德尔还对其它植物作了大量的类似研究,其中包括玉米、紫罗兰和紫茉莉等,以期证明他发现的遗传规律对大多数植物都是适用的。

从生物的整体形式和行为中很难观察并发现遗传规律,而从个别性状中却容易观察,这也是科学界长期困惑的原因。孟德尔不仅考察生物的整体,更着眼于生物的个别性状,这是他与前辈生物学家的重要区别之一。孟德尔选择的实验材料也非常科学。因为豌豆属于具有稳定品种的自花授粉植物,容易栽种,容易逐一分离计数,这对于他发现遗传规律提供了有利的条件。

孟德尔清楚自己的发现所具有的划时代意义,但他还是慎重地重复实验了多年,以期更加臻于完善。1865年,孟德尔总结出著名的遗传规律,在布尔诺(Brno)自然科学学会宣读了他的论文《植物杂交试验》(Experiments in Plant Hybridization),尽管与会者绝大多数是学会会员,其中既有化学家、地质学家和生物学家,也有生物学专业的植物学家、藻类学家。但听众对连篇累续的数字和繁复枯燥的沦证毫无兴趣,他们跟不上孟德尔的思维,因此无法估计孟德尔发现的重要性。第二年,孟德尔在学会的杂志上发表了他得到的试验结果,也没有引起科学界的注意。孟德尔的论文在此后30余年中未被科学界所知。

1881年,德国学者编了一本植物学杂交论文的目录,力求无所不包,孟德尔的论文很幸运地被列了进去,并最终导致了在1900年,被三位生物学家同时发现。1900年,成为遗传学史乃至生物科学史上划时代的一年,来自三个国家的三位学者同时独立地“重新发现”孟德尔遗传定律,他们是荷兰的德弗里斯(Hugo De Vries,1848~1935)、德国的柯灵斯(Carl Erich Correns,1864~1933)和澳大利亚的契马克(Erich von Tschermak-Seysenegg,1871~1962)。从此,遗传学进人了孟德尔时代。

德弗里斯1877年曾到英国拜访达尔文并有过一次长谈,这使他专心致志于解决当时进化论所面临的最大的问题:遗传机理。象孟德尔一样,他以植物为研究材料,不过他用的是月见草。他种了二十年超过五万株的月见草,从中发现了新种。他认为这些新种是由于“突变”导致的,并认为突变是产生变异的原因。现在已知道,他所发现的这些新种并不是基因突变,而是染色体畸变所致,不过他仍然被视为发现基因突变的第一人。之后,他就转往研究性状的传递问题。1900年,德弗里斯认为自己已发现了遗传定律,写成论文,分寄法兰西科学院和德国植物学学会。法语版的论文先登了出来,柯灵斯读了以后,发觉实际上就是孟德尔所发现的定律,就给德弗里斯寄去了一份孟德尔的论文。德弗里斯赶在德语版论文出来之前,匆忙在论文中加注了孟德尔的论文,但声明“在实验就要全部完成并已得出结论后,才读到孟德尔的论文”。

柯灵斯也在做植物杂交的实验,在德弗里斯之后也赶紧发表了实验结果。他在论文中提到了孟德尔,但也象德弗里斯一样,声明是在自己独立地发现了遗传定律之后才读到孟德尔的论文的。

契马克也在几星期后发表了论文,在论文中引用了孟德尔,但同样称自己独立地发现了遗传定律,然后才验证孟德尔的实验。

不论他们发表论文的动机如何,这三位著名的生物学家在一年之内同时发表论文宣扬孟德尔,使孟德尔定律很快引起了生物学界的重视。生物学界掀起了验证孟德尔定律的热潮。

1909年,丹麦生物学家约翰逊(Wilhelm Ludwig Johannsen,1857~1927)根据希腊文“给予生命”之义,创造了基因(gene)一词,并用这个术语代替孟德尔的“遗传因子”。不过他所说的基因并不代表物质实体,而是一种与细胞的任何可见形态结构毫无关系的抽象单位。因此,那时所指的基因只是遗传性状的符号,还没有具体涉及基因的物质概念。

美国遗传学家摩尔根(Thomas Hunt Morgan,1866~1945)对基因学说的建立作出了卓越的贡献。1915年至1928年,他和他的助手以果蝇(右图)作为实验材料,第一次将代表某一特定性状的基因,同某一特定的染色体联系了起来,创立了遗传的染色体理论。随后遗传学家又应用当时发展的基因作图(gene mapping)技术,构筑了基因的连锁图,进一步揭示了在染色体载体上基因是按线性顺序排列的。

首先用实验证明基因的化学本质就是DNA分子的是加拿大生物化学家艾弗里(Oswald Theodore Avery,1877~1955 )。1945年,他和他的合作者在纽约进行细菌转化的研究,实验材料是肺炎链球菌,结果说明,使细菌性状发生转化的因子是DNA(即脱氧核糖核酸),而不是蛋白质或RNA(即核糖核酸)。

这一重大的发现轰动了整个生物界。因为当时许多研究者都认为,只有像蛋白质这样复杂的大分子才能决定细胞的特征和遗传。而艾弗里等人的工作打破了这种信条,在遗传学理论上树起了全新的观点,即DNA分子是遗传信息的载体。

当人们为艾弗里的实验而激烈争论时,美国微生物学家赫尔希(Alfred Day Hershey,1908~1997)等人在考虑,能否将蛋白质和DNA完全分开,单独观察DNA的作用呢?他们的实验材料是T2噬菌体(右图)。实验证实,进入细菌细胞的噬菌体是核酸;进而说明,携带遗传信息的是核酸,而不是蛋白质。噬菌体的DNA不但包括噬菌体自我复制的信息,而且包括合成噬菌体蛋白质所需要的全部信息。1952年,赫尔希和他的学生共同发表报告,肯定了艾弗里的结论。此后,再也无人怀疑DNA是遗传物质了。

英国生物物理学家阿斯特伯里(William Thomas Astbury,1898~1961)1938年曾通过X射线结晶衍射图发现DNA分子是多聚核苷酸分子的长链排列。然而阿斯特伯里所发现的DNA图片极其不清楚,无法真实反映DNA清晰的图像。

1950年,爱尔兰科学家威尔金斯(Maurice Wilkins,1916~)的研究小组就测定了DNA在较高温度下的X射线衍射,得到的照片比阿斯特伯里的要精美得多。其中一个主要原因就是他们保持了DNA纤维的湿润状态。DNA的X光衍射照片中有明显的几组点组成了十字的一横,提示DNA的整个结构为螺旋形,但证据并不充分。后来,威尔金斯似乎再也无法深入到更深层面了解DNA的真实结构。

具有非凡才能的英国女科学家罗沙琳德·弗兰克林(Rosalind Franklin,1920~1958)加盟到威尔金斯小组。她凭着独特的思维,设计了更能从多方面了解物质不同现象的实验方法,如获取在不同温度下的DNA的X射线衍射图。把这些各种局部的结构形状汇总,DNA的衍射图片越来越全面。1952年5月她获得了一张清晰的DNA的X光衍射照片。弗兰克林与威尔金斯提出DNA的结构可能是双螺旋。

美国化学家鲍林(Linus Pauling,1901~1994)从1951年起就在用同样的X射线晶体衍射方法研究蛋白质的氨基酸和多肽链,最后发现了血红蛋白多肽链为α螺旋链,他成为X射线晶体衍射的权威。鲍林将注意力转到了DNA,并获得了一些DNA的X射线晶体衍射图片。也许是由于实验的问题,或是指导思想的问题,鲍林一直认为DNA是三螺旋结构,走入了误区。

1953年,最伟大的模型——DNA双螺旋结构模型被提出来了,两位创立者是美国生物化学家沃森(James Dewey Watson,1928~)和英国生物物理学家克里克(Francis Harry Compton Crick,1916~)。

1951年,沃森前往意大利参加生物大分子结构会议。威尔金斯和弗兰克林关于DNA的X射线晶体衍射图分析报告吸引了沃森。博士毕业后沃森在英国的卡文迪什实验室与克里克相遇并共同研究DNA的结构。虽然受到自威尔金斯和弗兰克林的报告的启发,但是,DNA具体是一个什么样的螺旋结构,是双链、三链还是四链的,沃森和克里克心中并没有谱。

起初,沃森与克里克认为DNA的螺旋结构应该是三螺旋,并从鲍林那里获得启示开始了“搭积木”式的研究。因为鲍林发现血红蛋白的α螺旋链就是靠“搭积木”摆弄出来的。许多化学分子的结构模型都是这样被人们认识的。

沃森与克里克按照他们的理解搭出了DNA三螺旋的结构。他们认为,这个模型与威尔金斯和弗兰克林提供的X衍射图比较吻合,尽管弗兰克林当时并不知道DNA的精确结构应当是什么样的,但她指出这个模型过分模仿水分子,DNA结构不应当是三螺旋。

沃森和克里克对DNA螺旋结构的数种设想都被威尔金斯和弗兰克林否定。在1953年2月14日的讨论中,威尔金斯出示了一幅弗兰克林获得的非常清晰的DNA晶体衍射照片。这张照片突然激发了沃森头脑中的思维,DNA链只能是双链的才会显示出这样漂亮而清晰的图。1953年2月28日沃森和克里克重新摆弄出了正确的DNA双螺旋结构。1953年4月25日《自然》杂志发表了沃森与克里克的DNA双螺旋结构假说的不到1000字短文《核酸的分子结构——脱氧核糖核酸的一个结构模型》,并配有威尔金斯和弗兰克林的两篇文章,以支持沃森和克里克的假说。后来鲍林和其他科学家的研究也从不同方面证明了DNA双螺旋结构。一个月后,沃森与克里克在《自然》杂志上又发表一篇论文,讨论了遗传物质复制的机制。

沃森和克里克在一封信中对弗兰克林说,她和威尔金斯的DNA双螺旋结构X衍射图片对他们启发很大。正是在这张图片和弗兰克林与威尔金斯的不断指引,他们才走上了正确的跑道,并最终完成了一项具有划时代意义的伟大工作。DNA双螺旋结构的发现标志着分子生物学从此诞生。它不仅说明了DNA为什么是遗传信息的携带者,而且说明了基因的复制和突变等机理。

随着研究的深入,人们已经了解到生物界并非所有的基因都是由DNA构成的。某些病毒和噬菌体,它们遗传体系的基础是RNA,而不是DNA。1956年,德国科学家吉尔(Alfred Gierer)和施拉姆(G.Schramm) 在研究烟草花叶病毒时,首先发现了RNA分子能够传递遗传信息,同时他们还发现烟草花叶病毒的RNA成分在感染的植株叶片中能够诱导合成新的病毒颗粒。

最初由孟德尔提出的遗传因子(hereditary factor)的概念,通过摩尔根、艾弗里、赫尔希和沃森、克里克等数代科学家的研究,已经使生物遗传机制建立在遗传物质DNA的基础之上。 科学家们围绕DNA的结构和作用,继续开展研究,取得了一系列重大进展。1961年,美国生物学家尼伦伯格(Marshall Warren Nirenberg,1927~)等人成功破译了遗传密码,以无可辩驳的科学依据证实了DNA双螺旋结构的正确性。人们对遗传机制有了更深刻的认识。现在,基因已经是以一种真正的分子物质呈现在我们面前,再也不是一种神秘成分了。科学家可以像研究其它大分子一样,客观地探索基因的结构和功能,并已经开始向控制遗传机制、防治遗传疾病、合成生命等更大的造福于人类的工作方向前进。