富春山居图被谁烧了:如果SATA是串口硬盘那么RAID是什么硬盘

来源:百度文库 编辑:杭州交通信息网 时间:2024/04/28 15:48:40
硕泰克主板说明上说SATA是普通硬盘RAID是串口硬盘,小妹刚进入电脑世界不久故对此很疑惑,请各位给个解释

SATA只是用来连接硬盘到主板的一种方式,也就是用SATA的连接线。而RAID是个很不同的概念。RAID是英文Redundant Array of Inexpensive Disks的缩写。是一种硬盘的设置格式。通常的有RAID 0,RAID 1格式等等。想要用RAID设置的话,是需要两个以上的硬盘的。拿RAID 0来说吧,每一片文件都会被分成两部分,一部分存到硬盘A里,另一半存到硬盘B里面,这样的好处就是存储于读取都快,是对效率的提高,不过对文件不安全。RAID 1是相当于把同样的文件同时存到硬盘A与B里面,这样就相当于创造了一个备份,对文件是很安全的,通常这是服务器的做法。普通用户来讲,如果不是文件需要特殊保护,用RAID 0更好。其实还有RAID 3,RAID 5等等,我就不多说了,你要是想知道的话可以自己去看看,我主要的就是把大概RAID的意思解释了。就是一种设置硬盘的方式。

SATA是硬盘接口,RAID是一种硬盘技术。
SATA是PATA的换代产品,IDE接口硬盘一般就是我们俗称的并行规格的PATA硬盘,目前大多数台式存储系统采用的都是称为Ultra-ATA的并行总线接口硬盘产品,这样的规格技术是自80年代以来一直被应用在桌上型系统作为主流的内部储存互连技术,由于运用领域十分广泛时间又较长,所以成熟的技术带来的是大规模集成制造的低成本和飞速发展的大容量。
由于长时间的没有改变,在数据的传输上来看,这种IDE接口硬盘显得有一些滞后,因为目前主流的PATA硬盘仅能支持ATA/100和ATA/133两种数据传输规范,传输速率最高只能达到 每秒100或133MB,这仅可以满足目前一般情况下的大容量硬盘数据传输。另外,这类硬盘所使用的80-pin数据线在机箱内部杂而乱,它会阻碍空气在机箱里的流动,从而影响到系统的散热。虽然劣势明显,不过对于一些原来老用户来说,由于原有的主板平台并不支持SATA接口,这种IDE接口的PATA大容量硬盘还是首选,还有一些用户认为这类型的硬盘在技术上成熟、稳定,所以也选择这类型的PATA硬盘。
由英特尔、戴尔、希捷、Maxtor以及APT等厂商所组成serialata.org,推出了就硬盘而言的新技术规格,Serial ATA,它为串行接口,在IDF Fall 2001大会上,希捷宣布了Serial ATA 1.0标准,正式宣告了SATA规范的确立这也是硬件新近颁布的一种的标准。
在技术特点来看,不得不承认PATA硬盘在安装、传输速率及功耗、抗震、噪声等多方面都要逊于SATA硬盘。因为SATA硬盘它具有更快的外部接口传输速度,数据校验措施更为完善,SATA 1.0规范规定的标准传输率可以达到150MB/S,这样可以充分发挥Serial ATA接口的性能优势,因为ATA100的理论数值是100MB/s,即便是ATA133也最高为133MB/s。另外在安装上首先SATA的连接线非常方便,而且SATA最重要的特性就是支持热插拔。串行SATA方式通过更好的数据校验方式,信号电压低可以有效的减小各种干扰,从而大大提高数据传输的效率,而且新式的SATA硬盘连接线也更加有利机箱内部的散热。
RAID(Redundant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。

二、RAID的几种工作模式

1、RAID0

即Data Stripping数据分条技术。RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。

(1)、RAID 0最简单方式

就是把x块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方式串联在一起,形成一个独立的逻辑驱动器,容量是单独硬盘的x倍,在电脑数据写时被依次写入到各磁盘中,当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中,它的好处是可以增加磁盘的容量。速度与其中任何一块磁盘的速度相同,如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,可靠性是单独使用一块硬盘的1/n。

(2)、RAID 0的另一方式

是用n块硬盘选择合理的带区大小创建带区集,最好是为每一块硬盘都配备一个专门的磁盘控制器,在电脑数据读写时同时向n块磁盘读写数据,速度提升n倍。提高系统的性能。

2、RAID 1

RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存关键性的重要数据的场合。RAID 1有以下特点:

(1)、RAID 1的每一个磁盘都具有一个对应的镜像盘,任何时候数据都同步镜像,系统可以从一组镜像盘中的任何一个磁盘读取数据。

(2)、磁盘所能使用的空间只有磁盘容量总和的一半,系统成本高。

(3)、只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行。

(4)、出现硬盘故障的RAID系统不再可靠,应当及时的更换损坏的硬盘,否则剩余的镜像盘也出现问题,那么整个系统就会崩溃。

(5)、更换新盘后原有数据会需要很长时间同步镜像,外界对数据的访问不会受到影响,只是这时整个系统的性能有所下降。

(6)、RAID 1磁盘控制器的负载相当大,用多个磁盘控制器可以提高数据的安全性和可用性。
3、RAID0+1

把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立带区集至少4个硬盘。

4、RAID2

电脑在写入数据时在一个磁盘上保存数据的各个位,同时把一个数据不同的位运算得到的海明校验码保存另一组磁盘上,由于海明码可以在数据发生错误的情况下将错误校正,以保证输出的正确。但海明码使用数据冗余技术,使得输出数据的速率取决于驱动器组中速度最慢的磁盘。RAID2控制器的设计简单。

5、RAID3:带奇偶校验码的并行传送

RAID 3使用一个专门的磁盘存放所有的校验数据,而在剩余的磁盘中创建带区集分散数据的读写操作。当一个完好的RAID 3系统中读取数据,只需要在数据存储盘中找到相应的数据块进行读取操作即可。但当向RAID 3写入数据时,必须计算与该数据块同处一个带区的所有数据块的校验值,并将新值重新写入到校验块中,这样无形虽增加系统开销。当一块磁盘失效时,该磁盘上的所有数据块必须使用校验信息重新建立,如果所要读取的数据块正好位于已经损坏的磁盘,则必须同时读取同一带区中的所有其它数据块,并根据校验值重建丢失的数据,这使系统减慢。当更换了损坏的磁盘后,系统必须一个数据块一个数据块的重建坏盘中的数据,整个系统的性能会受到严重的影响。RAID 3最大不足是校验盘很容易成为整个系统的瓶颈,对于经常大量写入操作的应用会导致整个RAID系统性能的下降。RAID 3适合用于数据库和WEB服务器等。

6、 RAID4

RAID4即带奇偶校验码的独立磁盘结构,RAID4和RAID3很象,它对数据的访问是按数据块进行的,也就是按磁盘进行的,每次是一个盘,RAID4的特点和RAID3也挺象,不过在失败恢复时,它的难度可要比RAID3大得多了,控制器的设计难度也要大许多,而且访问数据的效率不怎么好。
7、 RAID5

RAID 5把校验块分散到所有的数据盘中。RAID 5使用了一种特殊的算法,可以计算出任何一个带区校验块的存放位置。这样就可以确保任何对校验块进行的读写操作都会在所有的RAID磁盘中进行均衡,从而消除了产生瓶颈的可能。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。RAID 5提高了系统可靠性,但对数据传输的并行性解决不好,而且控制器的设计也相当困难。

8、RAID6

RAID6即带有两种分布存储的奇偶校验码的独立磁盘结构,它是对RAID5的扩展,主要是用于要求数据绝对不能出错的场合,使用了二种奇偶校验值,所以需要N+2个磁盘,同时对控制器的设计变得十分复杂,写入速度也不好,用于计算奇偶校验值和验证数据正确性所花费的时间比较多,造成了不必须的负载,很少人用。

9、 RAID7

RAID7即优化的高速数据传送磁盘结构,它所有的I/O传送均是同步进行的,可以分别控制,这样提高了系统的并行性和系统访问数据的速度;每个磁盘都带有高速缓冲存储器,实时操作系统可以使用任何实时操作芯片,达到不同实时系统的需要。允许使用SNMP协议进行管理和监视,可以对校验区指定独立的传送信道以提高效率。可以连接多台主机,当多用户访问系统时,访问时间几乎接近于0。但如果系统断电,在高速缓冲存储器内的数据就会全部丢失,因此需要和UPS一起工作,RAID7系统成本很高。

10、 RAID10

RAID10即高可靠性与高效磁盘结构它是一个带区结构加一个镜象结构,可以达到既高效又高速的目的。这种新结构的价格高,可扩充性不好。

11、 RAID53

RAID7即高效数据传送磁盘结构,是RAID3和带区结构的统一,因此它速度比较快,也有容错功能。但价格十分高,不易于实现。

个人使用磁盘RAID主要是用RAID0、 RAID1或RAID0+1工作模式。

SATA是串口硬盘,RAID是两块以上组建的磁盘阵列!

RAID是英文Redundant Array of Inexpensive Disks的缩写,中文简称为廉价磁盘冗余阵列。RAID就是一种由多块硬盘构成的冗余阵列。虽然RAID包含多块硬盘,但是在操作系统下是作为一个独立的大型存储设备出现。利用RAID技术于存储系统的好处主要有以下三种:

通过把多个磁盘组织在一起作为一个逻辑卷提供磁盘跨越功能
通过把数据分成多个数据块(Block)并行写入/读出多个磁盘以提高访问磁盘的速度
通过镜像或校验操作提供容错能力
最初开发RAID的主要目的是节省成本,当时几块小容量硬盘的价格总和要低于大容量的硬盘。目前来看RAID在节省成本方面的作用并不明显,但是RAID可以充分发挥出多块硬盘的优势,实现远远超出任何一块单独硬盘的速度和吞吐量。除了性能上的提高之外,RAID还可以提供良好的容错能力,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。

RAID技术分为几种不同的等级,分别可以提供不同的速度,安全性和性价比。根据实际情况选择适当的RAID级别可以满足用户对存储系统可用性、性能和容量的要求。常用的RAID级别有以下几种:NRAID,JBOD,RAID0,RAID1,RAID0+1,RAID3,RAID5等。目前经常使用的是RAID5和RAID(0+1)。

NRAID
NRAID即Non-RAID,所有磁盘的容量组合成一个逻辑盘,没有数据块分条(no block stripping)。NRAID不提供数据冗余。要求至少一个磁盘。

JBOD
JBOD代表Just a Bunch of Drives,磁盘控制器把每个物理磁盘看作独立的磁盘,因此每个磁盘都是独立的逻辑盘。JBOD也不提供数据冗余。要求至少一个磁盘。

RAID 0
RAID 0即Data Stripping(数据分条技术)。整个逻辑盘的数据是被分条(stripped)分布在多个物理磁盘上,可以并行读/写,提供最快的速度,但没有冗余能力。要求至少两个磁盘。我们通过RAID 0可以获得更大的单个逻辑盘的容量,且通过对多个磁盘的同时读取获得更高的存取速度。RAID 0首先考虑的是磁盘的速度和容量,忽略了安全,只要其中一个磁盘出了问题,那么整个阵列的数据都会不保了。

RAID 1
RAID 1,又称镜像方式,也就是数据的冗余。在整个镜像过程中,只有一半的磁盘容量是有效的(另一半磁盘容量用来存放同样的数据)。同RAID 0相比,RAID 1首先考虑的是安全性,容量减半、速度不变。

RAID 0+1
为了达到既高速又安全,出现了RAID 10(或者叫RAID 0+1),可以把RAID 10简单地理解成由多个磁盘组成的RAID 0阵列再进行镜像。

RAID 3和RAID 5
RAID 3和RAID 5都是校验方式。RAID 3的工作方式是用一块磁盘存放校验数据。由于任何数据的改变都要修改相应的数据校验信息,存放数据的磁盘有好几个且并行工作,而存放校验数据的磁盘只有一个,这就带来了校验数据存放时的瓶颈。RAID 5的工作方式是将各个磁盘生成的数据校验切成块,分别存放到组成阵列的各个磁盘中去,这样就缓解了校验数据存放时所产生的瓶颈问题,但是分割数据及控制存放都要付出速度上的代价。

按照硬盘接口的不同,RAID分为SCSI RAID,IDE RAID和SATA RAID。其中,SCSI RAID主要用于要求高性能和高可靠性的服务器/工作站,而台式机中主要采用IDE RAID和SATA RAID。

以前RAID功能主要依靠在主板上插接RAID控制卡实现,而现在越来越多的主板都添加了板载RAID芯片直接实现RAID功能,目前主流的RAID芯片有HighPoint的HTP372和Promise的PDC20265R,而英特尔更进一步,直接在主板芯片组中支持RAID,其ICH5R南桥芯片中就内置了SATA RAID功能,这也代表着未来板载RAID的发展方向---芯片组集成RAID。

Matrix RAID:
Matrix RAID即所谓的“矩阵RAID”,是ICH6R南桥所支持的一种廉价的磁盘冗余技术,是一种经济性高的新颖RAID解决方案。Matrix RAID技术的原理相当简单,只需要两块硬盘就能实现了RAID 0和RAID 1磁盘阵列,并且不需要添加额外的RAID控制器,这正是我们普通用户所期望的。Matrix RAID需要硬件层和软件层同时支持才能实现,硬件方面目前就是ICH6R南桥以及更高阶的ICH6RW南桥,而Intel Application Acclerator软件和Windows操作系统均对软件层提供了支持。

Matrix RAID的原理就是将每个硬盘容量各分成两部分(即:将一个硬盘虚拟成两个子硬盘,这时子硬盘总数为4个),其中用两个虚拟子硬盘来创建RAID0模式以提高效能,而其它两个虚拟子硬盘则透过镜像备份组成RAID 1用来备份数据。在Matrix RAID模式中数据存储模式如下:两个磁盘驱动器的第一部分被用来创建RAID 0阵列,主要用来存储操作系统、应用程序和交换文件,这是因为磁盘开始的区域拥有较高的存取速度,Matrix RAID将RAID 0逻辑分割区置于硬盘前端(外圈)的主因,是可以让需要效能的模块得到最好的效能表现;而两个磁盘驱动器的第二部分用来创建RAID1模式,主要用来存储用户个人的文件和数据。

例如,使用两块120GB的硬盘,可以将两块硬盘的前60GB组成120GB的逻辑分割区,然后剩下两个60GB区块组成一个60GB的数据备份分割区。像需要高效能、却不需要安全性的应用,就可以安装在RAID 0分割区,而需要安全性备分的数据,则可安装在RAID 1分割区。换言之,使用者得到的总硬盘空间是180GB,和传统的RAID 0+1相比,容量使用的效益非常的高,而且在容量配置上有着更高的弹性。如果发生硬盘损毁,RAID 0分割区数据自然无法复原,但是RAID 1分割区的数据却会得到保全。

可以说,利用Matrix RAID技术,我们只需要2个硬盘就可以在获取高效数据存取的同时又能确保数据安全性。这意味着普通用户也可以低成本享受到RAID 0+1应用模式

SATA就是串口硬盘

RAID是一直硬盘技术,主要用于提高性能和安全性

可以这样说,你的主板如果想组成RIAD就只能用SATA硬盘。

解释都好复杂的