支付宝安全险怎么取消:谁看过相对论啊,怎样

来源:百度文库 编辑:杭州交通信息网 时间:2024/05/05 00:54:52

看不大懂

相对论

十九世纪后期,由于光的波动理论的确立,科学家相信一种叫“以太”的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电磁信号是“以太”中的波。然而,与空间完全充满“以太”的思想相悖的结果不久就出现了:根据“以太”理论应得出,光线传播速度相对于“以太”应是一个定值,因此,如果你沿与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。
在这些实验当中,阿尔波特·迈克尔逊和埃迪沃德·莫里1887年在美国俄亥俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球应穿行在“以太”中,因此上述成直角的两束光线应因地球的运动而测量到不同的速度,爱尔兰物理学家乔治·费兹哥立德和荷兰物理学家亨卓克·洛仑兹,最早认为相对于“以太”运动的物体在运动方向的尺寸会收缩,而相对于“以太”运动的时钟会变慢。并且洛仑兹提出了著名的洛仑兹变换。而对“以太”,费兹哥立德和洛仑兹当时都认为是一种真实存在的物质。而法国数学家庞加莱怀疑这一点,并预见全新的力学会出现。

马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。

狭义相对论

狭义相对论适用于惯性参照系

1、 狭义相对论的两条基础原理

(1) 狭义相对性原理——在所有的惯性系中物理定律的形式相同。各惯性系应该是等价的,不存在特殊的惯性系。即事物在每个惯性系中规律是一样的。(从合理性上说)

(2) 光速不变原理——在所有的惯性系里,真空中光速具有相同的值。光速与广泛的运动无关;光速与频率无关;往返平均光速与方向无关。(该原理由迈克尔逊-莫雷实验引出。)

2、 狭义相对论运动学的核心——洛仑兹变换

有了这两个新的公理,则非常重要的洛仑兹变换关系就非常自然的推导出来了。讨论一个从t=0 x=0发出的光子在∑系和∑’系(在t=0时∑’系与∑系重合,以后∑’以V沿X轴方向运动。)中的情况,根据:

1、时空均匀性:x=γ(x’+vt’)
2、相对性原理:x’=γ(x-vt)

3、光速不变原理:x=ct

x’=ct’

其中:时空均匀性条件不是新的原理,一个固定的物体放在空间任一位置无论何时长度是相同的这是非常直观的,由简单的推理可知均匀时空的坐标变换是线性的。因为若设:x=ax’2+bt’,则任一瞬间(dt’=0)测量一物体长度:dx=2ax’dx’.可见对∑’系任一个dx’放在不同的x’,对∑系来说是长度不同的。也即对∑系空间是不均匀的这不符合直觉。因∑’与∑是等价的,∑’系变到∑系有x=γ(x’+vt’),则∑系变到∑’就一定有x’=γ(x - vt),可见相对性原理对不同的惯性系是公平的。最后由光速不变原理给出的两个关系,看起来费解,却有实验支持。这样解4个方程立即得到 和洛仑兹变换:

∑’系→∑系 ∑系→∑’系

x=γ(x’+vt’) x’=γ(x - vt)

y=y’ y’=y

z=z’ z’=z

t=γ(t’+vx’/c2) t’=γ(t-vx/c2)

洛仑兹变换统一了时空和运动,统一了高速世界和经典力学研究的低速情况。当v<<c时γ=1即洛仑兹变换变成了伽俐略变换。

3、 狭义相对论时空观

①同时的相对性:由Δt=γ(Δt’+vΔx’/c2),Δt’=0时,一般Δt≠0。称x’/c2为同时性因子。

②运动的钟变慢:由Δt=γ(Δt’+vΔx’/c2),因运动的钟在自己的参照系中Δx’=0,则Δt=γΔt’≥Δt’。

③运动的长度缩短:由Δx=Δx’/γ+vΔt,因测量运动的长度时必须Δt=0,则Δx=Δx’/γ= Δx’≤Δx’。常称 为收缩因子, 为膨胀因子。

4、 狭义相对论力学

(1) 相对论质量

讨论:∑系中质量为m0的A球以V沿x方向运动,相对∑系以V运动的∑’系上有同样的球B以相对∑’系ux’= -V运动,两球相碰发生完全弹性碰撞,如图:

根据:

对∑系由动量守恒:

(m+m0)ux=mv

对∑’系由动量守恒:

(m+m0)ux’= -mv

速度变换式:
解这几个方程就得到:m=γm0 竟然速度v增加(γ增加)质量m也要增加。

(2) 相对论质能关系

讨论:单个粒子在外力F作用下移动一段路程使得动能从0→EK。

根据:动能定理:A=ΔEK

牛顿定律:
质速关系:m=γm0

推导:Ek=Ek-0=ΔEK=
由 → m2c2-p2= m02c2 → pdp= mc2dm 代入上式得:

EK=
显然,粒子的总能量为:E=mc2

粒子的静止能量为:E0=m0c2

粒子的动能为:

EK=mc2 – m0c2=
可见粒子的动能不等于经典的形式,但当V<<c时,EK≈mV2/2

(3) 相对论力学方程

在经典物理中牛顿定律常把它写成 ,现代物理证明这只在低速情况下近似成立,普遍的形式是 。实际上这是力的定义式。力是物体整体运动状态变化的原因,用P来表示状态参量要比用V周全,因为V仅仅表示了物体相对运动因素,而P=mv表示了物体整体作相对运动时运动的完整数量。

广义相对论

尽管相对论与电磁理论的有关定律结合得非常完美,但它与牛顿的重力定律不相容。牛顿的重力理论表明,如果你改变空间的物质分布,整个宇宙中重力场的改变是同时发生的,这不但意味着你可以发送比光速传播更快的信号(这是为相对论所不容的),而且需要绝对或普适的时间概念,这又是为相对论所抛弃的。1911年,爱因斯坦深入思考这个问题。爱因斯坦意识到加速与重力场的密切关系,在密封厢中的人,无法区分他自己对地板的压力是由于他处在地球的重力场中的结果,还是由于在无引力空间中他被火箭加速所造成的。于是他提出了引力与加速度等效原理。并用黎曼几何处理弯曲四维空间,创立了广义相对论。

1915年爱因斯坦把狭义相对论原理推广到更一般的情况,即非惯性系中,建立了广义相对论。

1.等效原理——非惯性系与一个引力场等效。

所有的实验结果都得出同一结论:惯性质量等于引力质量。

牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。但他认为这一结果是一种简单的巧合。与此相反,引力质量和惯性质量的等同性是爱因斯坦论据中的第三假设。

爱因斯坦一直在寻找“引力质量与惯性质量相等”的解释。他认为:如果一个惯性系相对于一个伽利略系被均匀地加速,那么我们就可以通过引入相对于它的一个均匀引力场而认为它(该惯性系)是静止的。日常经验验证了这一等同性:两个物体(一轻一重)会以相同的速度“下落”。然而重的物体受到的地球引力比轻的大。那么为什么它不会“落”得更快呢?因为它对加速度的抵抗更强。结果是,引力场中物体的加速度与其质量无关。伽利略是第一个注意到此现象的人。引力场中所有的物体“以同一速度下落”是(经典力学中)惯性质量和引力质量等同的结果。

2.广义相对论原理——自然法则(物理学基本规律)在所有的系中都是相同的。

这是爱因斯坦的第四假设,是其第一假设的推广。不可否认,宣称所有系中的自然规律都是相同的比称只有在伽利略系中自然规律相同听起来更“自然”。

3.广义相对论的描述

1912年爱因斯坦意识到如果真实几何中引入一些调整,重力与加速的等价关系就可以成立。爱因斯坦想象,如果三维空间加上第四维的时间所形成的空间-时间实体是弯曲的,那结果是怎样的呢?他的思想是,质量和能量将会造成时空的弯曲,这在某些方面或许已经被证明。像行星和苹果,物体将趋向直线运动,但是,他们的径迹看起来会被重力场弯曲,因为时空被重力场弯曲了。
1913年在他的朋友马歇尔·格卢斯曼的帮助下,爱因斯坦学习弯曲空间及表面的理论,即黎曼几何。这些抽象的理论,在玻恩哈德·黎曼将它们发展起来时,从未想到与真实世界会有联系。我们所认识的重力,只是时空是弯曲的事实的一种表述。

广义相对论提出了三个可检验的预言。第一个是水星的近日点的摄动,该现象指出,轨道上运动的行星在绕太阳运行时,每完成一个周期并非精确返回到空间的原来位置,而是稍稍有些前移。这一事实早在19世纪中叶就已发现,但经典的牛顿天体力学无法对摄动现象做出满意的解释。第二个预言是,光线在引力场中将发生偏转。按照这个说法,星光在经过太阳附近时,将受到太阳引力的影响而偏折。结果是恒星的机位会有一个变化。观测这一现象只有发生日全蚀时才能进行,否则太阳的强烈光线使地面上根本观测不到太阳附近的恒星光线(瑞士天文学家M.施瓦兹柴尔德对这个现象做了详细的定量描述)。第三个预言通常被称为谱线“红移”,即恒星辐射总是背离我们而去。

第一次世界大战刚一结束,英国天文学家爱丁顿立即在1919年组织了英国日蚀观测队,去检测星光经过日全蚀太阳时将发生偏转的预言。两支观测队分别出发,一个派往巴西的索布拉尔,另一个由爱丁顿率领来到西班牙所属圭那亚海岸附近的普林西比岛。观测结果与预言相符,立即震撼了全世界的科学家和公众。

爱因斯坦

这个形式简洁优美的理论蕴亓颂?嗔钊司?鹊哪谌荩?00年来,人们时时从中悟出宇宙层出不穷的奥秘,直到今天,这里还有很多内容没有被我们悟透。

相对论的研究对象是超越我们日常经验的高速运动世界和广阔的宇宙,这是我们难以理解相对论的主要原因。

自相对论诞生之日起,它所带来的时空观革命就极大地拓展了人类对宇宙的理解。从相对论中,人们发现了时间旅行的奥秘、原子裂变的巨大能量、宇宙的起源和终结、黑洞和暗能量等奇妙现象。几乎宇宙所有的奥秘都隐藏在相对论那几行简单的公式中。

时间旅行

时间旅行也许意味着可以去修正或改变命运的发展,或是与历史上的风云人物们一起去见证伟大的历史事件;人们当然也有可能去未来旅行,比如去那里了解股市行情,探知科学上的新发现。时间旅行打开了一扇既可以回到过去又可以踏入未来的大门。

如果认为时间旅行仅仅只是一个科幻小说的题材,那就大错特错了,因为相对论的思想表明,时间旅行是可能的。

狭义相对论证明高速旅行会使时间变慢,假定将来的某个时候,人们已解决了所有的技术难题,能够制造一艘以亚光速飞行的宇宙飞船,一定意义上的时间旅行就变成可能了。如果飞船以亚光速从地球出发向遥远的星系飞去,来回的旅程仅仅几年(按飞船上的时间),但在此期间地球上却已过去了几千年,一切都发生了天翻地覆的变化。如果人类文明依然还存在的话,那又会是一个什么新的模样呢?

广义相对论表明,时空可以不是平坦的,而是弯曲的。我们可以在地球与宇宙遥远的地方这两点之间凿出一个虫洞,然后用某种“奇异物质”把洞口撑开,使之成为一个突然出现在宇宙中的超空间管道,让我们在瞬间到达遥远的彼岸。然后当我们返回时,虫洞的奇异性质让我们年轻了很多。

广义相对论判定足够的质量能改变和扭曲时空,数学家法兰克·提普勒据此设想了把时空卷起来的时间旅行方法。他认为,如果太空中的一个巨大物体以一半光速旋转,时空便会扭曲折回。因此,只要将来有人制造一个巨大的圆筒,它的长约为直径的10倍,然后使圆筒以15万公里/秒的速度旋转,便会使圆筒中央附近产生一个扭曲折回的时空。

要将这圆筒当时间机器使用,宇宙飞船一定要开到圆筒的中心沿圆筒内壁盘旋飞行:逆圆筒旋转的方向航行是驶入过去,顺圆筒旋转的方向航行是驶入未来,每盘旋一周都使宇宙飞船更深入过去或未来一些。时间旅行者到达了目的时间,便将飞船驶离圆筒。有一件必须明了的事是,正像所有理论上的时间机器一样,就是驶向过去无论怎样也不能到达比制成圆筒更早的时间。

时间旅行是一个极具幻想色彩、也极具魅力的话题,长期以来,科学家们提出的方案一个又一个,时间旅行可能遇到的问题也被热烈讨论着。总有一天,相对论迷人的光芒会照耀着我们开始真正的时间旅行。

原子裂变

1905年11月,爱因斯坦同样在德国《物理学纪事》杂志上发表了关于狭义相对论的第二篇文章:《物体的惯性同它所包含的能量有关吗?》,这是一篇短文,在这篇论文中,他提出一个物体的质量并不是恒定不变的,而是随着运动速度的增加而增加。这就是运动中物体的“质增效应”。

现在我们想象我们在推一辆小板车,板车很轻,上面什么东西也没有。假设这是一辆在真空中的“理想”板车,没有任何摩擦力、也没有任何阻力,因此,只要我们持续地推它,它的速度就越来越快,但随着时间的推移,它的质量也越来越大,起初像车上堆满了钢铁,然后好像是装着一座喜马拉雅山、再然后好像是装着一个地球、一个太阳系、一个银河系……当小板车接近光速时,好像整个宇宙都装在它上面——它的质量达到无穷大。这时,你无论施加多大力,无论推多长时间,它都不可能运动得再快一些。

由此可见,光子既然以光速传播,它的静止质量就必须等于零,否则它的运动质量就会无穷大。

当物体运动接近光速时,我们不断地对物体施加外力,供给能量,可物体速度的增加越来越困难,我们施加的能量去哪儿了呢?其实能量并没有消失,而是转化为了质量。这就是说,物体质量的增加与动能增加有着密切联系,或者说物体的质量与能量之间有着密切联系。爱因斯坦在说明这种联系的过程中,提出了著名的质能关系式:E=mc2.

能量等于质量乘以光速的平方,即使是在不甚关心其实用价值的纯理论型的物理学家看来也是惊心动魄的,而在绝大多数人眼里,能量等于质量乘以光速的平方,即能量是质量的900万倍,是多么诱人的前景呀!指甲盖般大小的物质的质量如果完全消失,其释放的能量是用以万吨煤炭来计算的。

遗憾的是,没人能随便减少质量,譬如一块石头,我们尽可以用锤子砸成小块,然后碾成碎末,可是当你仔细地收集这些碎末后就会发现它的质量并未变化。

但是,十几年后的1939年,约里奥·居里、费米、西拉德这三位科学家分别独立发现了链式反应,使人类找到了释放巨大原子能的方法。铀235的核收到中子轰击就会发生裂变,分裂成两个中等质量的新原子核,放出1~3个中子,并释放出巨大能量,这些中子又能引发其它铀核再分裂,如此反复,形成连锁反应,不断释放巨大能量。这就是链式反应。

链式反应使原子能成为杀伤力巨大的新武器。仅仅在几年后,人类第一颗原子弹在美国爆炸成功,紧接着日本人遭受了人类历史上最残酷的惩罚,几十万人死伤,其中一部分人瞬间还被原成基本粒子,真成了魂飞魄散。E=mc2在给人间带来希望之前,带来的先是致命的创伤,这一切对于深爱和平的爱因斯坦来说无疑是一记重拳,直至临死前他仍为此痛心不已。

宇宙大爆炸

令我们这些当代人感到惊诧的是,迟至1917年,那些人类最具智慧的大脑仍然以为我们的银河系就是整个宇宙,而这个银河系大小的宇宙永远都是稳定不变的,既不会变大也不会变小,这就是流传了千百年的稳恒态宇宙观。

1917年,爱因斯坦试图根据广义相对论方程推导出整个宇宙的模型,但他发现,在这样一个只有引力作用的模型中,宇宙不是膨胀就是收缩。为了使这个宇宙模型保持静止,爱因斯坦在他的方程里额外增加了一个新的概念——宇宙常数,它表示的是一种斥力,同引力相反,它随着天体之间距离的增大而增强。这是一个假想的、用以抵消引力作用的力。

然而,爱因斯坦很快发现自己错了。因为科学家们很快发现,宇宙实际上是膨胀的!

最早观察到这一点的是20世纪的天文学之父哈勃。哈勃1889年出生于美国的密苏里州,毕业于芝加哥大学天文系。1929年,哈勃发现所有星系都在远离我们而去,这表明宇宙正在不断膨胀。这种膨胀是一种全空间的均匀膨胀,因此,在任何一点的观测者都会看到完全一样的膨胀,从任何一个星系来看,一切星系都以它为中心向四面散开,越远的星系间彼此散开的速度越大。

宇宙的膨胀意味着,在早先,星体相互之间更加靠近,并且在更遥远过去的某一刻,它们似乎在同一个很小的范围内。

宇宙膨胀的消息传到著名物理学家伽莫夫那里去的时候,立即引起了这位学者的兴趣。乔治·伽莫夫出生于俄国,自小对诗歌、几何学和物理学都深感兴趣,在大学时期成为物理学家弗里德曼的得意门生。弗里德曼曾在爱因斯坦之后提出了重要的宇宙膨胀模型,伽莫夫也成为宇宙膨胀理论的热心支持人之一。1945年,人类史上第一颗原子弹爆炸成功,看着蘑菇云升起的照片,伽莫夫突发灵感:把原子弹规模“放大”到无穷大,不就成了宇宙爆炸吗?他把核物理知识和宇宙膨胀理论结合起来,逐渐形成了自己的一套大爆炸宇宙理论体系。

1948年,伽莫夫和他的学生阿尔法合写了一篇著名论文,系统地提出了宇宙起源和演化的理论。与我们惯常的想法不同,这个创生宇宙的大爆炸不是发生在一个确定的点,然后向四周的空气传播开去的那种爆炸,而是空间本身在扩展,星系物质随着空间的扩展而分开。

根据大爆炸宇宙论,极早期的宇宙是一大片由微观粒子构成的均匀气体,温度极高,密度极大,且以很大的速率膨胀着。伽莫夫还作出了一个非凡的预言:我们的宇宙仍沐浴在早期高温宇宙的残余辐射中,不过温度已降到6K左右。正如一个火炉虽然不再有火了,还可以冒一点热气。

1964年,美国贝尔电话公司年轻的工程师——彭齐亚斯和威尔逊,因一次偶然的机会发现了伽莫夫所预言的早期宇宙的残余辐射,经过测量和计算,得出这个残余辐射的温度是2.7K(比伽莫夫预言的温度要低),一般称为3K宇宙微波背景辐射。这一发现有力的佐证了宇宙大爆炸理论。

广义相对论的智慧之处就在于,它从诞生起就能描述整个完整的宇宙,即使那些未知的领域也被全部囊括进去。让它对付像太阳系这样小小的、很普通的时空领域可真是大材小用了。

宇宙常数死而复生——暗能量

在发现了宇宙膨胀这个事实后,爱因斯坦就急急忙忙把他方程中的宇宙常数项去掉了,并认为宇宙常数是他“一生中最大的错误”。随后,宇宙常数被抛进历史的垃圾堆。

然而造化弄人,几十年后,宇宙常数又像鬼魂般的复活了。这次宇宙常数的复活要归因于暗能量的发现。

1998年,天文学家们发现,宇宙不只是在膨胀,而且在以前所未有的加速度向外扩张,所有遥远的星系远离我们的速度越来越快。那么一定有某种隐藏的力量在暗中把星系相互以加速膨胀的方式撕扯开来,这是一种具有排斥力的能量,科学家们把它称为“暗能量”。近年来,科学家们通过各种的观测和计算证实,暗能量不仅存在,而且在宇宙中占主导地位,它的总量约达到宇宙总量的73%,而宇宙中的暗物质约占23%、普通物质仅约占4%.我们一直以为满天繁星就已经够多了,宇宙中还有什么能比得上它们呢?而现在,我们才发现这满天繁星却是“弱势群体”,剩下的绝大部分都是我们知之甚少或干脆一无所知的,这怎么不让人感到惊心动魄呢!

事实上,早在1930年,就有天体物理学家指出,爱因斯坦那加入了宇宙常数的宇宙学方程并不能导出完全静态的宇宙:因为引力和宇宙常数是不稳定的平衡,一个小小的扰动就能导致宇宙失控的膨胀和收缩。而暗能量的发现告诉我们,爱因斯坦那作为与引力相抗衡的宇宙常数不仅确确实实存在,而且大大扰动了我们的宇宙,使宇宙的膨胀速率严重失控。在经历了一系列曲折后,宇宙常数正在时间中复活。

宇宙常数今日以暗能量的面目出现在世人面前,它所产生的汹涌澎湃的排斥力已令整个宇宙为之变色!暗能量和引力之间的角力战自宇宙诞生起就没有停止过,在这场漫长的战斗中,最举足轻重的就是彼此的密度。物质的密度随着宇宙膨胀导致的空间增大而递减;但暗能量的密度在宇宙膨胀时,变化得非常缓慢,或者根本保持不变。在很久以前,物质的密度是较大的,因此那时的宇宙是处于减速膨胀的阶段;现今的暗能量密度已经大于物质的密度,排斥力已经从引力手中彻底夺得了控制权,以前所未有的速度推动宇宙膨胀。根据一些科学家的预测,再过200多亿年,宇宙将迎来动荡的末日,恐怖的暗能量终将把所有的星系、恒星、行星一一撕裂,宇宙将只剩下没有尽头的寒冷、黑暗。

暗能量的发现,也充分地体现了人类认知过程又走进了一个“悖论怪圈”:即宇宙中所占比例最多的,反而是最迟也是最难为我们所知晓的。一方面人类现在对宇宙奥秘的了解越来越多,另一方面我们所要面对的未知也越来越多。而这日益深远的未知又反过来不断刺激着人类去探索宇宙背后的真相。

暗能量是怎么来的?它将如何发展?这已经是21世纪宇宙学所面临的最重大问题之一。

黑洞大发现

广义相对论表明,引力场可以造成空间弯曲,强大的引力场可以造成强烈的空间弯曲,那么无限强大的引力场会产生什么情况呢?

1916年爱因斯坦发表广义相对论后不久,德国物理学家卡尔·史瓦西就用这个理论描绘了一个假设的完全球状星体附近的空间和时间是如何弯曲的。他证明,假如星体质量聚集到一个足够小的球状区域里,比如一个天体的质量与太阳相同,而半径只有3公里时,引力的强烈挤压会使那个天体的密度无限增大,然后产生灾难性的坍塌,使那里的时空变得无限弯曲,在这样的时空中,连光都不能逃逸!由于没有了光信号的联系,这个时空就与外面的时空分割成两个性质不同的区域,那个分割球面就是视界。

这就是我们今天耳熟能详的黑洞,但在那个年代,几乎没有人相信有这么奇怪的天体存在,甚至包括爱因斯坦本人和爱丁顿这样的相对论大师也明确表示反对这种怪物,爱因斯坦还说他可以证明没有任何星体可以达到密度无限大。就连黑洞这个名称也是一直到1967年才由美国物理学家惠勒命名。

历史当然不会因此而停止前进,时间进入20世纪30年代,美国天文学家钱德拉塞卡提出了著名的“钱德拉塞卡极限”,即:一颗恒星当其氢核燃尽后的质量是太阳质量的 1.44倍以上时,将不可能变成白矮星,而会继续坍塌收缩,变成体积比白矮星更小、密度比白矮星更大的星体,即中子星。1939年,美国物理学家奥本海默进一步证明,一颗恒星当其氢核燃尽后的质量是太阳质量的3倍以上时,其自身引力的作用将能使光线都不能逃出这个星体的范围。

随着经验的积累,关于黑洞的理论变得成熟起来,人们从彻底拒绝这个怪物到渐渐相信它,到20世纪60年代,人们已普遍接受黑洞的概念,黑洞的奥秘被逐渐研究出来。

严格而言,黑洞并不是通常意义下的“星”, 而只是空间的一个区域。这是与我们日常宇宙空间互不连通的区域,黑洞视界将这两个区域隔绝开,在视界以外,可以由光信号在任意距离上相互联系,这就是我们所居住的正常宇宙;而在视界以内,光线并不能自由地从一个地方传播到另一个地方,而是都朝向中心集聚,事件之间的联系受到严格限制,这就是黑洞。

在黑洞的内部,物体向黑洞坠落的过程中,潮汐力越来越大,在中心区域,引力和起潮力都是无限大。因此,在黑洞中心,除了质量、电荷和角动量以外,物质其他特性全部丧失,原子、分子等等都将不复存在!在这种情形下,无法谈论黑洞的哪一部分物质,黑洞是一个统一体!

在黑洞中心,全部物质被极为紧密地挤压成为一个体积无限趋近于零的几何点,任何强大的力量都不可能把它们分开,这就是所谓的“奇点”状态。广义相对论无法对此进行考察,而必须代之以新的正确理论——量子理论。讽刺的是,广义相对论给我们导出了一个黑洞,却在黑洞的奇点之处失效,量子理论取而代之,而量子理论和相对论却根本互不相容!

1905年爱因斯坦(1879——1955)发表了狭义相对论。这个理论指出在宇宙中唯一不变的是光线在真空中的速度,其它任何事物——速度、长度、质量和经过的时间,都随观察者的参考系(特定观察)而变化。这个理论形成了一个著名的公式:E=MC2狭义相对论认为时间不是绝对的(即固定不变的)。爱因斯坦指出,随着物体(观察者所见到的)线性运动速度的加快,时间会变慢。其二:任何物体以光速运动时,其长度将会缩短为零。提出时间和空间都是绝对的,空间和时间是完全分开的。然而,在相对论数学中,时间和三维空间——长、宽和高,一起构成一个四维空间框架,叫做时空关联集。
爱因斯坦从他的狭义相对论中推导出等式E=MC2(这里E是能量,M是质量,C是恒定的光速),他用这个等式解释了质量和能量是等价的。现在认为,质量和能量是同一种物质的不同形式,称为质能。例如,如果一个物体的能量减少了一定量E,则它的质量也减少等于MC2的量,然而,质能不会消失,只不过以另一种形式被释放,它叫辐射能量。
1915年发表了他的广义相对论。他解释了引力作用和加速度作用没有差别的原因。他还解释了引力是如何和时空弯曲联系起来的,利用数学,爱因斯坦指出物体使周围空间、时间弯曲,在物体具有很大的相对质量(例如一颗恒星)时,这种弯曲可使从它旁边经过的任何其它事物,即使是光线,也改变路径。广义相对论指出,时空曲率将产生引力。当光线经过一些大质量的天体时,它的路线是弯曲的,这源于它沿着大质量物体所形成的时空曲率。因为黑洞是极大的质量的浓缩,它周围的时空非常弯曲,即使是光线也无法逃逸。
几百年来牛顿的经典力学使众多人信服,因为他适用于低速、宏观的惯性系。而相对论适用于高速(接近光速)的或微观的量子态以及非惯性系,人们很难通过实验得以证实和观察,所以很多人无法接受这一事实。但相对论可以很好的解决这一问题。因此说相对论是现代物理学的奠基石。
相对论是关于物质运动与时间空间关系的理论。它是现代物理学的理论基础之一。

狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

科学