哪里可以学古琴:银河系是什么来的?

来源:百度文库 编辑:杭州交通信息网 时间:2024/04/29 21:10:28
银河系有多小颗星啊?银河系是什么来的?为什么银河系这么大?

银河系 是星系的典型代表,由1500~2000亿颗恒星和无数的星际物质组成。银河系主体部分称银盘,直径8.5×104l.y.(光年)(1l.y.=94600×108km),中央呈近似球形隆起的部分,称为核球,直径104~1.3×104l.y.,厚约104l.y.,是恒星高度密集区域;核球的中心称为银核,是银河系的质心。肉眼见到的银河就是银河系主体在天球上的投影。银盘外围被恒星密度很稀的扁球状银晕所包围,直径达到10×104l.y.(图2-1,左;1×103秒差距(pc)=3261.6l.y.)。

从垂直银河系平面的方向看,银盘内恒星和星际物质在磁场和密度波影响下分布并不均匀,而是由核球向外伸出的四条旋臂组成旋涡结构(图2-1,右)。旋臂是银河系中恒星和星际物质的密集部位。

太阳是银河系众多恒星中的普通一员,它位于银盘中心平面(银道面)附近和一条旋臂(猎户座旋臂)的内缘,距银核约2.7×104l.y.处。

(2)太阳在银河系内的运动

银河系的旋涡结构反映了自身存在自转运动,也就是银河系中的恒星、星云和星际物质都绕银核旋转。太阳绕银核旋转的速度为250km/s,旋转一周约2.5×108~3×108y,称为银河年。

银河系内不同星体间的运动也存在复杂的情况。有人提出太阳在旋转过程中可能发生两种周期性变化。一种是从银河系侧面看,发生在银道面上下的往复波动,大体每隔35百万年就穿越银道面一次。另一种是从银河系平面看,由于不同星体旋转速度不等,太阳与银河系四个旋臂并不同步并行,大体每隔75百万年就穿越旋臂一次。上述假说在天文学研究领域内尚待进一步验证。

2、星系运动和总星系

(1)银河系的运动和河外星系

银河系除存在自转外,同时整体以214km/s的速度向着麒麟座方向运动。近些年天文学研究已陆续发现,宇宙空间中存在500亿个类似银河系的恒星系,它们自身直径也达十万光年左右,离银河系则有几十亿至上百亿光年之遥,称为河外星系。若把可见宇宙比作广阔的海洋,它们只不过是散布其中的岛屿,也称为宇宙岛(world island)。

(2)从星系团到总星系

10万光年尺度的星系在空间分布并不均匀,它们有成团的趋势,可以形成星系团。星系团的规模大小不等,形状也各不相同,典型的空间尺度达到千万光年(即108km)量级,总质量达到1047g量级。星系团内星系之间距离约为百万光年量级。银河系和相邻仙女星系、麦哲伦星云等30个星系组成一个规模较小的集团,称为本星系群。

星系团在空间的分布也不均匀,许多星系团可以进一步组成超星系团,典型的空间尺度达到1亿光年量级。本星系群和室女星系团构成的本超星系团,直径约1~2.5亿光年,总质量为太阳的千万亿倍。

人类现在观测能力所及的可见宇宙称为总星系,其典型空间尺度为150亿光年,年龄为100亿光年量级,总质量达到1056克量级。

3、 大爆炸学说与宇宙起源问题

(1)谱线红移与可见宇宙

轰鸣的火车驶近我们时声波频率增强,声调变高;驶离时则声波频率降低,声调变低(多普勒效应)。与此同理,发光星体接近观察者时,见到的星光谱线向频率高的蓝光方向移动,称为蓝移;当离开观察者时,向频率低的红光方向移动,称为红移。

哈勃(E.P.Hubble,1929)经过大量实际观测发现,来自不同星系的光呈现某种系统性的红移现象。根据星系中特定原子发射的光的谱线与地球上实验室内同种原子发射的光进行比较,可求得光源星系离开观察者的退行速度;再根据相同类型恒星的视亮度比较,推算出光源星体离我们的距离。由此获得了“光源越远的星体,离我们而去的速度也越快”的结论,就是著名的哈勃定律(图2-2)。

哈勃定律揭示了遥远的星系正在“逃离”我们而去,整个总星系都处于膨胀的变化之中,已经成为当今人们的共识。另一方面,银河系内部不同恒星的谱线分析证明也有不少蓝移现象,反映星系内部仍然具有吸引力。1996年哈勃太空望远镜还拍摄到距地球6300×104光年处(乌鸦座南部)星系间发生超级碰撞的照片。因此,宇宙的膨胀看来主要发生在星系团之间的空间迅速增大,星系本身尺度变化不大,类似吹胀气球时在气球表面看到的情况(图2-3)。已知宇宙中不同部位的密度特征也可能与之有关(表2-1)。

(2)大爆炸宇宙学说

当代宇宙起源假设中,大爆炸宇宙学说是最有影响的一种学说。该学说提出于40年代,本身也在不断发展完善中。其主要内容如下:

宇宙在大爆炸前处于极高温和超高密状态,物质与反物质以及物质与能量均呈平衡状态。在某种物理条件下开始了大爆炸,在宇宙诞生10-44s之后体积急剧暴胀,在10-34s内迅速膨胀约10100倍,密度相应降低。但在1秒钟之内温度仍高达1032K至1010K以上,原子和分子均无法存在。当时宇宙中的物质存在形式和行为目前无法在实验室模拟,推测可能存在辐射能以及电子、中微子(neutrinos,一种不受电、磁、核力影响的基本粒子,1998年证实具有极微小的静止质量)和质子、中子形式基本粒子。目前人类业已观测到从宇宙早期留下的最早原子核形成于爆炸后1秒钟,因此,可以把这1s看作宇宙史研究的一道分水岭。

爆炸进行3min后,温度降至109K以下,核反应开始启动,由质子和中子聚变为氘核、氦核和锂核最轻元素后可以不至于瓦解(图2-4)。当时全部物质中氦占约22%,氢占78%,还有极少量氘和锂。

至百万年前后,温度降至107~6K范围,宇宙间弥漫着由轻元素原子核和电子、质子等组成的等离子体。2.5亿年后温度降至103K时,辐射减弱,中性原子形成,等离子体复合成为正常气体。至10亿年前后星系开始形成,50亿年前后开始出现首批恒星,太阳系的形成则在100亿年前后。

宇宙大爆炸学说虽然获得国际多数学者支持,但在大爆炸起因,大爆炸是永远进行下去还是后期将转化为收缩,大爆炸由一个奇点开始还是整个空间每一点都可看作是膨胀的中心,大爆炸最初1秒钟内的物质形式和行为等根本性问题上并没有公认结论,在哈勃半径和宇宙形成年龄测定上还存在不同见解。

有关宇宙大爆炸各种模型的提出和探讨,势必涉及时空是否永恒存在等一系列根本的哲学思想问题。例如有人认为,在大爆炸之初的10-43s(普朗克时期),当时的可见宇宙尺度小于它的量子波长,整个宇宙变得为量子不确定性所主宰,根本就没有“钟”和“尺子”能加以测量,即广义相对论时空概念失效,是一个没有时空的物理世界,需要通过时空的量子化途径来探讨已知时空形式的起源。这对于传统上认为宇宙无边无界、无始无终的哲学思想也是一种冲击,对于促进哲学观念的现代化也有重要意义。

银河系 是星系的典型代表,由1500~2000亿颗恒星和无数的星际物质组成。

银河系众多星系的一员,是众多星体组成的星体团。

银河系之所以这么大,是以为还有比它更大的东西存在,那个就是银河存身的宇宙!!!
(宇宙说:什么?有个叫银河系的?啥子来的?未听过。)

我的一些瞎想
以下几点是现在的一些事实和理论得出:
一、类星体是二十世纪六十年代射电天文学的四大发现之一。类星体体积很小但其光亮度和一个星系相当。
二、微波背景辐射也是二十世纪六十年代射电天文学的四大发现之一。其为温度近于绝对温度2.7K的黑体辐射,且其在宇宙的任何地方都能探测到。
三、黑洞是一个只吸收物质的,理论得出的宇宙部分。
四、白洞是与黑洞相对应的一个只发出物质的,也为理论得出的宇宙部分。
在这个想法里认为流动的能量产生温度。在黑洞和白洞之间存在一个流动的能量带,黑洞中吸收的物质都转化为能量通过能量带传送到白洞,再在白洞中转化为物质而发出,且黑洞吸收的物质和白洞发出的物质是相等的。而类星体即为理论上的白洞,星系的中央即为理论上的黑洞。所以类星体的光亮度才可以和一个星系的相当。又由于流动的能量产生温度,故在黑洞和白洞之间会产生一温度,而我认为这就是微波背景辐射的来源。
总的来说这个想法里,宇宙的结构是:由星系和类星体一一连接分布构成一闭合球面,且在离一个星系最远处为与其对应的类星体,除去球面部分就是连接星系与类星体的流动的能量带。
银河系是自然存在的,如果问是怎么来的,就是与它对应的类星体所释放出来的。