codol画质补丁7.0:什么是放射性配基?

来源:百度文库 编辑:杭州交通信息网 时间:2024/04/24 22:04:39

放射性配基是核医学的一种。核医学是研究核素、核射线及其在医学领域中应用的学科。
根据核医学的研究内容、研究手段和研究对象的不同,又可以将核医学分为:临床核医学、实验核医学(又称基础核医学)和分子核医学三个大类。临床核医学主要是应用核素、核射线和核仪器对病人进行诊断和治疗;基础核医学是应用核素、核射线和核仪器进行医学基础理论和药物作用机理研究;而分子核医学根据核素的“分子”示踪原理,从细胞结构、生物化学反应及代谢等方面,在分子生物学、分子遗传学等分子医学水平上,揭示疾病的病因、病机、治疗及疗效和机理。临床核医学、实验核医学、分子核医学之间虽然有差异,但是,他们的共同点都是以原子核物理为基础。为此,他们相互依存、相互渗透,共同构成了核医学的整体。在中医的临床和基础研究中最早引用,并在实际中广泛应用的是实验核医学和分子核医学。
由于微电子技术、分子生物学技术、基因工程和结构生物学等高新科学技术的发展,电子计算机、单克隆抗体等的出现,核仪器和试剂等有关核医学技术和方法迅速更新。核磁共振(Nuclear Magnetic Resonance,NMR)、正电子发射计算机断层(Positron Emission Computed Tomegraphy,PECT)、放射免疫显影(Radioimmune Image,RII)、放射免疫分析(Radioimmunoassay,RIA)、免疫放射分析(Immunoradiometric Assay,IRMA)等新仪器、新技术和新方法的建立和发展,使核医学对疾病早期诊断、早期治疗的优点更加突出。核医学在分子水平、基因水平上对疾病的诊断和治疗,使诊断更加迅速、灵敏和准确,使治疗更加有效,使基础医学研究如虎添翼。
6.7.1核医学的主要研究方法
目前核医学应用和研究的范畴主要有临床核医学、实验核医学和分子核医学三个方面。限于篇幅,本章重点介绍中医基础理论和临床研究中经常使用的实验核医学和分子核医学的主要方法及其原理。
6.7.1.1实验核医学
在中医临床和基础理论研究中,经常使用的核医学方法有:放射免疫分析(RIA)、免疫放射分析(IRMA)、受体放射性配基结合分析(Receptor Radio-ligand Banding Assay, RRLBA)、放射自显影(Autoradiography, ARG)、同位素视踪(Isotopic, IT)等技术,以及以IT为原理而建立的同位素渗入法测定细胞免疫功能等各种方法。这里重点介绍RIA、IRMA 和RRLBA的基本原理。
1.放射免疫分析的基本原理
RIA属于竞争免疫分析法,也称“标记分析物”技术(Ekins,1987)。其原理是:放射性标记抗原与非标记抗原同时竞争抗体上的有限位点,然后将结合与未结合的游离抗原分离,用液体闪烁仪或γ-计数仪测定其放射性分布,绘制标准曲线,从标准曲线中计算待测样本的含量。RIA的基本原理通常可以用以下公式表示:

Ag*+Ab ↔ Ag*-Ab (1)
+
Ag

Ag-Ab
式(1)中Ag*为标记抗原,Ab为特异性抗体,Ag*-Ab为标记抗原和特异性抗体结合的复合物,Ag是非标记抗原,可以是标准品,也可以是与标准品相似的被测物。在RIA反应体系中抗体的结合位点是有限的,Ag*与Ag和Ab的结合能力是相同的。Ag*与Ab的结合与Ag的含量密切相关,遵守化学反应中的质量作用定律。也就是说,随着Ag量的增加,Ag-Ab结合增加,Ag*-Ab结合必然减少。Ekins等人建立了RIA的数学模式,推导出RIA的反应式:
K1
Ag+Ab ↔ AgAb (2)
K-1
式(2)中K1为结合速率常数,K-1为解离速率常数。当反应达到平衡时,
K=K1/K-1=(AgAb)/(Ag)(Ab) (3)
式(3)中K为亲和常数,将式(2)代入式(3)中,推导出:
b/f=(AgAb)/(Ag)=K(Ab) (4)
b/f=K(AbT-B) (5)
式(4)中b/f为结合抗原与游离抗原的比率,式(5)中AbT=Ab+AgAb,为抗体的总浓度,AgT=Ag+AgAb(式5中未见,原稿同),为抗原的总浓度,B为结合的抗原浓度。从式(5)中导出:b/f与结合抗原B的浓度之间存在线性关系。若以抗原浓度为横坐标,以b/f或抗原结合率为纵坐标即可绘制RIA的标准曲线。现在出售的液体闪烁仪和γ-计数仪都带有RIA的各种计算软件,即可以由计算机绘制标准曲线,并直接给出样本的数据。
2.免疫放射分析法基本原理
IRMA与RIA的基本原理相似,其不同之处是RIA是用同位素标记抗原,而IRMA是标记抗体。尤其是单克隆抗体的出现,使IRMA迅速发展。由于标记的抗体可以与固体支持物以物理方法结合,使IRMA在分离结合与游离的抗原抗体复合物时变得简单、快速、准确,提高了工作效率和测量结果的精密度。
3.受体放射性配基结合分析的基本原理
受体是细胞膜或细胞内一些能与生物活性分子,如神经递质、激素、蛋白质抗原以及药物或毒素等相互作用的大分子。它们是一类具有结合和识别能力、信号传导能力并产生生物效应的多肽或蛋白质。受体的概念早在1878年Langkey就提出了。但是,直到20世纪30年代,Clark研究乙酰胆碱对蛙心的作用,发现了剂量-效应曲线,才初步确定了受体反应的基本原理。其反应方程式如下:
K1
R+L↔ RL (6)
K-1
式(6)中R代表受体分子,是Receptor的缩写。L代表与R结合的配基,是Ligand的缩写。K1是结合速度常数,K-1是解离速度常数。当反应达到平衡时,
K=K1/K-1=(RL)/(R)(L) (7)
式(7)中K为亲和常数,表示受体与配基的结合,与RIA一样,也遵守质量作用规律。因为受体的数目是有限的,可以被非放射性配基所饱和,因此在一定范围内,受体的数目可以由其与放射性配基的结合量计算出。
由于受体的放射性配基大多是氚标记物,因此,常用液体闪烁仪测量其放射性分布。新的液体闪烁仪都带有各种受体放射性配基结合分析的软件,可以由计算机直接给出数据。如果测定每个样本的饱和曲线,可以计算出该受体的结和容量(Rt)。当样本量少,可用单点法测量样本的Rt值。受体的单点测量公式如下:
Rt=(样本管平均cpm-NSB管平均cpm )/(仪器测量效率%×配基比活度×样本蛋白质含量×样本反应体积) (8)
单位以fmol/mg蛋白表示。
式(8)中cpm为放射性配基每分钟脉冲数;NSB为非特异性结合管;配基比活度可以从所购放射性配基说明书中查出;仪器测量效率由标准品测量参数给出;蛋白质含量是样本工作液的实际蛋白质含量,可按常用生化方法测量;反应体积是指反应样本管的总体积。Rt值一般以fmol/mg蛋白表示。
4.标记免疫分析进展
RIA和RRLBA所用的标记物是同位素,所用的结合物是抗体和受体。由于同位素标记物对环境造成的污染不容忽视,促使科技工作者寻找其灵敏度可与同位素标记物媲美,而又不造成或减少环境污染的标记物。在这期间科学家使用酶标记技术、荧光标记技术及荧光偏振等标记技术。这些标记技术在用于标记免疫分析时,大大减少了放射性核素对环境的污染。但是,因为测量的灵敏度和稳定性较RIA、RRLBA差,以及许多生物活性物质还不能用酶标记及荧光标记技术测量,又给科学家提出了寻找新标记技术的课题。1976年Schroeder用化学发光标记技术建立了竞争性蛋白结合法测定生物素后,次年他和Halman又分别用化学发光免疫分析测定了甲状腺素(T4)。此后,化学发光免疫分析迅速发展。尤其是利用蛋白质工程及基因工程生产出单克隆抗体和抗体结合片段后,使化学发光免疫分析扩大到分析小分子抗原,尤其是甾体激素测定的所有样本。化学发光免疫分析技术体现了灵敏度高、稳定性好、重复性佳等优点,又增加了样本测量的全自动化进程。由于操作简单、样本用量少、测量速度快等优点,很受临床研究及临床检验单位的欢迎。
化学发光免疫分析可分为竞争性和非竞争性发光免疫分析,它们的原理可用以下公式表示:
Ag+Ag-L+Ab↔ Ag-Ab+Ag-Ab-L (9)
式(9)中Ag代表抗原,Ab代表抗体,而Ag-Ab为抗原抗体复合物,Ag-L为发光物质标记的抗原,L为发光物质,Ag-Ab-L为抗原抗体发光物质的复合物。
非竞争性化学发光免疫分析原理:
sp-Ab+Ag↔sp-Ab-Ag (10)
sp-Ab-Ag+Ab-L↔sp-Ab-Ag-L (11)
式(10)和(11)中,sp为固相载体,sp-Ab代表将Ab与固相载体偶联,sp-Ab-Ag代表抗原抗体结合后仍与固相载体偶联,而Ab-L为发光物质标记的抗体,sp-Ab-Ag-L 为抗原抗体与发光物质复合物与固相载体偶联。