国学都有什么:请问人的神经系统是怎么传递信息的?

来源:百度文库 编辑:杭州交通信息网 时间:2024/04/18 09:23:58
请问人的神经系统是怎么传递信息的?它是怎么工作的?传得是不是电信号?我是读通信的,想从中得到一些启发.

神经元与神经元之间,或神经元与非神经细胞(肌细胞、腺细胞等)之间的一种特化的细胞连接,称为突触 (The synapse is a specialized point of functional contact between neurons or between a neuron and a target organ (i.e., muscle) that allows neurons to communicate with one another or with their target cells.) 它是神经元之间的联系和进行生理活动的关键性结构。突触可分两类,即化学性突触(chemical synapse)和电突触(electrical synapse)。通常所说的突触是指前者而言。
  (一)化学性突触
  光镜下,多数突触的形态是轴突终未呈球状或环状膨大, 附在另一个神经元的胞体或树突表面,其膨大部分称为突触小体(synaptic corpuscle)或突触结(synaptic bouton)。根据两个神经元之间所形成的突触部位,则有不同的类型,最多的为轴-体突触(axo-somatic synapse)和轴-树突触(axo-axonal synapse)此外还有轴-棘突触(axo-spinous),轴-轴突触(axo-axonal synapse)和树-树突触(dendroden-driticsynapse)等等。通常一个神经元有许多突触,可接受多个神经元传来的信息,如脊髓前角运动神经元有2000个以上的突触。大脑皮质锥体细胞约有30000个突触。小脑浦肯野细胞可多达200 000个突触,突触在神经元的胞体和树突基部分布最密,树突尖部和轴突起始段最少。

  电镜下,突触由三部分组成:突触前部、突触间隙和突触后部。突触前部和突触后部相对应的细胞膜较其余部位略增厚,分别称为突触前膜和突触后膜,两膜之间的狭窄间隙称为突触间隙。

  突触前部(presynaptic element)神经元轴突终末呈球状膨大,轴膜增厚形成突触前膜(presynaptic membrane), 厚约6~7nm。在突触前膜部位的胞浆内,含有许多突触小泡(synaptic vesicle)以及一些微丝和微管、线粒体和滑面内质网等。突触小泡是突触前部的特征性结构,小泡内含有化学物质,称为神经递质(neurotransmitter)。各种突触内的突触小泡形状和大小颇不一致,是因其所含神经递质不同。常见突触小泡类型有:
  球形小泡(spherical vesicle),直径约20~60nm,小泡清亮,其中含有兴奋性神经递质,如乙酰胆碱;
  颗粒小泡(granular vesicle),小泡内含有电子密度高的致密颗粒,按其颗粒大小又可分为两种:小颗粒小泡直径约30~60nm,通常含胺类神经递质如肾上腺素、去甲肾上腺素等;大颗粒小泡直径可达80~200nm,所含的神经递质为5-羟色胺或脑啡肽等肽类;
  扁平小泡(flat vesicle),小泡长径约50nm,呈扁平圆形,其中含有抑制性神经递质,如γ-氨基丁酸等。
  各种神经递质在胞体内合成,形成小泡,通过轴突的快速顺向运输到轴突末端。新近研究发现在中枢和周围神经系统中,有两种或两种以上神经递质共存(coexistence neurotransmitter)于一个神经元中,在突触小体内可有两种或两种以上不同形态的突触小泡。如交感神经节内的神经细胞,有乙酸胆碱和血管活性肠肽(acetylcholine and vasoactive intestinal polypeptide)。前者支配汗腺分泌;后者作用于腺体周围的血管平滑肌使其松弛,增加局部血流量。神经递质共存的生理功能,是协调完成神经生理活动作用,使神经调节更加精确和协调。目前,许多事实表明,递质共存不是个别现象,而是一个普遍性规律,有许多新的共存递质和新的共存部位已被证实。其中多为非肽类递质(胆碱类、单胺类和氨基酸类)和肽类递质共存。
  关于突触小泡的包装、储存和释放递质的问题,现已知突触体素(synaptophysin),突触素(synapsin)和小泡相关膜蛋白(vesicle associated membrane protein VAMP)等三种蛋白与之有关。突触体素是突触小泡上Ca2+的结合蛋白,当兴奋剂到达突触时,Ca2+内流突然增加而与这种蛋白质结合,可能对突触小泡的胞吐起重要作用。突触素是神经细胞的磷酸蛋白,有调节神经递质释放的作用,小泡相关膜蛋白(VAMP)是突触小泡膜的结构蛋白,可能对突触小泡代谢有重要作用。

  突触后部(postsynaptic element)多为突触后神经元的胞体膜或树突膜,与突触前膜相对应部分增厚,形成突触后膜(postsynaptic membrane)。厚为20~50nm,比突触前膜厚,在后膜具有受体和化学门控的离子通道。根据突触前膜和后膜的胞质面致密物质厚度不同,可将突触分为Ⅰ和Ⅱ两型: ①Ⅰ型突触(tyPe Ⅰ synapse)后膜胞质面致密物质比前膜厚,因而膜的厚度不对称,故又称为不对称突触(asymmetrical synapse);突触小泡呈球形,突触间隙较宽(20~50nm);一般认为Ⅰ型突触是兴奋性突触,主要分布在树突干上的轴-树突触。 ②Ⅱ型突触(type Ⅱ synapse)前、后膜的致密物质较少,厚度近似,故称为对称性突触(symmetrical synapse),突触小泡呈扁平形,突触间隙也较窄(10~20nm)。认为Ⅱ型突触是一种抑制性突触,多分布在胞体上的轴-体突触。
  突触间隙(synaptic space)是位于突触前、后膜之间的细胞外间隙,宽约20~30nm,其中含糖胺多糖(如唾液酸)和糖蛋白等,这些化学成分能和神经递质结合,促进递质由前膜移向后膜,使其不向外扩散或消除多余的递质。
  突触的传递过程,是神经冲动沿轴膜传至突触前膜时,触发前膜上的电位门控钙通道开放,细胞外的Ca2+进入突触前部,在ATP和微丝、微管的参与下,使突触小泡移向突触前膜,以胞吐方式将小泡内的神经递质释放到突触间隙。其中部分神经递质与突触后膜上的相应受体结合,引起与受体偶联的化学门控通道开放,使相应的离子经通道进入突触后部,使后膜内外两侧的离子分布状况发生改变,呈现兴奋性(膜的去极化)或抑制性(膜的极化增强)变化,从而影响突触后神经元(或效应细胞)的活动。使突触后膜发生兴奋的突触,称兴奋性突触(exitatory synapse),而使后膜发生抑制的称抑制性突触(inhibitory synapse)。突触的兴奋或抑制决定于神经递质及其受体的种类,神经递质的合成、运输、储存、释放、产生效应以及被相应的酶作用而失活,是一系列神经元的细胞器生理活动。一个神经元通常有许多突触,其中有些是兴奋性的,有些是抑制性的。如果兴奋性突触活动总和超过抑制性突触活动总和,并达到能使该神经元的轴突起始段发生动作电位,出现神经冲动时,则该神经元呈现兴奋,反之,则表现为抑制。
  Presynaptic events: Presynaptic Membrane Depolarized-->Calcium Influx-->Vesicle Docking & Fusion--> Neurotransmitter Release
  Postsynaptic events: Neurotransmitter binding-->particular excitability effect: Excitatory or Inhibitory (EPSP/IPSP)
  EPSP是突触前膜释放兴奋性递质,作用突触后膜上的受体, 引起细胞膜对Na+、K+等离子的通透性增加(主要是Na+),导致Na+内流,出现局部去极化电位。
  IPSP是突触前膜释放抑制性递质(抑制性中间神经元释放的递质),导致突触后膜主要对Cl-通透性增加,Cl-内流产生局部超极化电位。
  特点:① 突触前膜释放递质是Ca2+内流引发的; ② 递质是以囊泡的形式以出胞作用的方式释放出来的; ③ EPSP和IPSP都是局部电位,而不是动作电位; ④ EPSP和IPSP都是突触后膜离子通透性变化所致,与突触前膜无关。
  化学突触的特征,是一侧神经元通过出胞作用释放小泡内的神经递质到突触间隙,相对应一侧的神经元(或效应细胞)的突触后膜上有相应的受体。具有这种受体的细胞称为神经递质的效应细胞或靶细胞,这就决定了化学突触传导为单向性。突触的前后膜是两个神经膜特化部分,维持两个神经元的结构和功能,实现机体的统一和平衡。故突触对内、外环境变化很敏感,如缺氧、酸中毒、疲劳和麻醉等,可使兴奋性降低。茶碱、碱中毒等则可使兴奋性增高。

  (二)电突触
  电突触是神经元间传递信息的最简单形式,在两个神经元间的接触部位,存在缝隙连接,接触点的直径约为0.1~10μm以上。也有突触前、后膜及突触间隙。突触的结构特点,突触间隙仅1~1.5nm,前、后膜内均有膜蛋白颗粒,显示呈六角形的结构单位,跨跃膜的全层,顶端露于膜外表,其中心形成一微小通道,此小管通道与膜表面相垂直,直径约为2.5nm,小于1nm的物质可通过,如氨基酸。缝隙连接两侧膜是对称的。相邻两突触膜,膜蛋白颗粒顶端相对应, 直接接触,两侧中央小管,由此相通。轴突终末无突触小泡,传导不需要神经递质,是以电流传递信息,传递神经冲动一般均为双向性。神经细胞间电阻小,通透性好,局部电流极易通过。电突触功能有双向快速传递的特点,传递空间减少,传送更有效。

  现在已证明,哺乳动物大脑皮质的星形细胞,小脑皮质的篮状细胞、星形细胞,视网膜内水平细胞、双极细胞,以及某些神经核,如动眼神经运动核前、庭神经核、三叉神经脊束核,均有电突触分布。电突触的形式多样,可见有树-树突触、体-体突触、轴-体突触、轴-树突触等。(星形细胞间连接:电突触)

  电突触对内、外环境变化很敏感。在疲劳、乏氧、麻醉或酸中毒情况下,可使兴奋性降低。而在碱中毒时,可使兴奋性增高。

  连接部位的神经细胞膜并不增厚,膜两侧旁胞浆内无突触小泡,两侧膜上有沟通两细胞胞浆的通道蛋白,允许带电离子通过而传递电信号。 电突触传递的功能是促进不同神经元产生同步性放电。

我也是读通信的 信息以冲动的形式在神经元内以电信息的方式传递 在神经元之间有突触,冲动在这由电信息转化成化学信息 由也只能由突触前膜传递到突触后膜
传递过程中 在神经元内的传递是可逆的 在神经之间的传递是单向的